闭区间上连续函数的性质_第1页
闭区间上连续函数的性质_第2页
闭区间上连续函数的性质_第3页
闭区间上连续函数的性质_第4页
闭区间上连续函数的性质_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二、介值定理一、最大值和最小值定理第十节闭区间上连续函数的性质第一章 函数与极限1定义 :例如 ,一、最大值和最小值定理2定理 1(最大值和最小值定理 ) 在闭区间上连续的函数一定能取到最大值和最小值 .注意 :1.若区间是开区间 , 定理不一定成立 ;2.若区间内有间断点 , 定理不一定成立 .3定理 2(有界性定理 ) 在闭区间上连续的函数一定在该区间上有界 .4二、介值定理定义 :此定理又称为 根的存在性定理5几何解释 :6几何解释 :MBCAmab证由零点定理 ,推论 在闭区间上连续的函数必取得介于最大值 与最小值 之间的任何值 .7例 1 证8例 2证由零点定理 ,9至少有一个不超过 4 的 证:证明令且根据零点定理 ,原命题得证 .内至少存在一点在开区间显然正根 .例 310例 4 验证方程至少有一个正根不大于证 设由零点定理,至少11例 5 设证 假设 则 至少则 至少与已知矛盾,故12例 6证由零点定理 ,解题思路:辅助函数法 :先作辅助函数 F(x),再利用零点定理 ;13小结四个定理:有界性定理 ;最值定理 ;介值定理 ;根的存在性定理.注意条件 1闭区间; 2连续函数这两点不满足,上述定理不一定成立难点: 做辅助函数 ,再利用零点定理证明等式重点: 最值定理 ;介值定理 ;根的存在性定理14思考题下述命题是否正确?15思考题解答不正确 .

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论