




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文是一篇关于相机标定意义和原理的个人总结,包含了 OpenCV 和 Matlab 中常用的相机 标定函数的注解。 相机标定是机器视觉的基础,标定结果的好坏直接决定了机器视觉的系统精度,作用可见 一斑。在这一年半的时间里,我个人也是随着实验和程序的进一步理解,对标定的原理和 意义有了更多的想法。同样,由于博文的关系,仍有一些朋友会常常询问标定的程序问题。 本人的 2010-05-17OpenCV 标定程序的问题也多次被朋友询问,由于当时对标定的认识还不 够系统,因此现在认为该文对标定的意义和原理有很多误解,并在此推荐一些较好的博文 拱大家学习: 双目测距与三维重建的 OpenCV 实现问题集锦(一)图像获取与单目标定; 双目测距与三维重建的 OpenCV 实现问题集锦(二)双目标定与双目校正; 双摄像头测距的 OpenCV 实现 ; 分享一些 OpenCV 实现立体视觉的经验 ; 下面结合本人的毕业论文及一年半来对机器视觉的学习,对相机标定的意义和原理进行叙 述。 1.单目相机模型 单目相机模型中的三种坐标系关系如图 1 所示,相机坐标系即是以光轴中心 O 为原点 的坐标系,其 z 轴满足右手法则,成像原点 所代表平面即为像平面坐标系(实际应用中,f 均以图像左上角为坐标系原点) ,实际物体坐标系即为世界坐标系。 x y 光轴中心 O 成像原点 u v Y w X w Z w Z P ( X w , Y w , Z w ) 实际物体坐标系 f fXfYP(,YZ)u 图 1 单目相机模型的三坐标系统关系 其中, 在世界坐标系的值为 , 是 在像平面坐标系的投影点,其相PWX,YZPu 机坐标系的值为 。 是相机坐标系 轴与像平面夹角,一般情况下 轴与像平(X,YZ)u Z 面垂直, 值为 。且相机坐标系 与像平面 平行, 为相机的焦距。90 xyffxyf 对于从相机坐标系到像平面坐标系的变换,像平面坐标系是用像素单位来表示的,而 相机坐标系则是以毫米为单位来表示,因此,要完成改变换过程就需要先得到像平面的像 素单位与毫米单位之间的线性关系。在图 1 中,相机光轴中心 z 轴方向上与像平面的交点 称为投影中心,坐标为 ,是像素单位,而每个像素在 和 的物理尺寸为xy(c,) fXfY 和 ,单位是像素/毫米,则像平面的像素与毫米间的线性关系如式(1):1xsdys (1)11 xxyus0cv 根据小孔模型下投影变换原理,像平面的物理坐标 对应的相机坐标系满足式(2):(,)x (2)XYZcosinuuuxffyf 其对应的矩阵形式为式(3): (3) Xcos0Y10inZZ1u1uxfy 联立式(1)和式(3) ,得到式(4)即为相机坐标系与像平面坐标系变换的矩阵。 (4) Xcos0Y10inZZ1u1xxyusfv 其中, 即为相机的 6 个内参数,其组成的矩阵即为内参数矩阵。1,xyxcfs 对于从相机坐标系到世界坐标系的变换,是通过旋转矩阵 R 和平移矩阵 T 完成的,如 图 2 所示。 ( R , T ) 摄 像 机 坐 标 系 成 像 面 P ( X w , Y w , Z w ) 物 体 坐 标 系PX,YZu x y z xy z O 图 2 相机坐标系与世界坐标系的变换关系 其中,平移矩阵 T 是三维列向量,旋转矩阵 R 是坐标轴依次绕 和 轴旋转角度,xyz 和 所形成的三个矩阵 的总乘积。它们的定义如式(5):,R,xyz (5) 10=cosin-iiR01sincosi=-01xyz 则矩阵 R 的计算公式如式(6): (6) coscsin+sicosin-cosins=-io- +ni 因此,从相机坐标系到世界坐标系的变换如式(7) ,其中, 表示 ,00 为旋转矩阵, 为平移矩阵,该变换矩阵称为外参数矩阵。R331T (7) wXXYYRZZ011u3T 最后,联立式(4)和式(7)求得像平面坐标系与世界坐标系之间的变换关系,如式 (8): (8) wwwXcos0YR10inZZ11=MZ11xx3yyu0102334230132sf Tvm 其中, 即为透视投影矩阵,表示空间中三维点坐标与图像平面二维坐标之间的线性关M34 系, 表示 的像平面齐次坐标值, 表示 的世界坐标系齐次1uvPu wXYZ1P 坐标值。基于以上几何原理和相机模型得到的图像信息和三维信息之间的关系,存在不可 逆性,即可以通过已知世界坐标系的坐标值求得二维坐标值,如果要进行二维坐标到三维 坐标的反求还需要其他的数学模型辅助求解。 2.Matlab 标定工具箱应用 1) 制作标定板,标定板尺寸为 324(mm)X252(mm),即 7 行 9 列 63 个 36mm 的正方形方格 组成,如图 3 所示。 图 3 标定方格板 2) 将水平平行的左右相机同时采集标定板的不同位姿图像,共计 12 组位姿(对于采集的 图像,位姿越多,标定结果也会越精确,建议在 10 组到 20 组之间)如图 4,5 所示。 图 4 左相机的标定图像 图 5 右相机的标定图像 3) 在工具箱中通过 Extract grid corners 提取每幅标定图像的特征点(即黑方格与白方 格的交点) 。 4) 进行单目标定,得到左右相机的内外参数以及畸变系数,并将参数保存到 Calib_Results_left 和 Calib_Results_right 两个 mat 格式的文件中。 3.Matlab 标定结果与 OpenCV 标定结果的比较与分析 Matlab 标定结果: 通过上节的步骤(1)- (4) ,可以得到如图 6 和 7 所示的左右相机的内参数、 畸变系数结果。 图 6 左相机的内参数和畸变系数 图 7 右相机的内参数和畸变系数 对于左右相机由于透镜畸变造成的误差使用工具箱中的 visualize_distortions 功能进行分析,可以得到左相机的畸变图,如 8、9、10 所示,相应的右相机畸 变图,如 11、12、13 所示。 图 8 左相机镜头畸变图 图 9 左相机径向畸变图 图 10 左相机切向畸变图 对于图 8 到 10,图中的 0 点即为左相机光学中心,图中的箭头显示相机图 像的畸变方向。图 8 左相机整体畸变模型中,该相机的左侧畸变不明显,若物 体的图像在此则不易受畸变因素影响造成线条的弯曲;图 9 左相机径向畸变模 型中,该相机的畸变系数由中心向外增大,即物体的图像越靠近图像边缘,其 线条的弯曲程度就越大;图 10 左相机切向畸变模型中,箭头方向显示该相机切 向畸变的增大方向,在相机的左侧其切向畸变与径向畸变的方向相反,使得整 体畸变模型中,相机左侧的畸变较小。 图 11 右相机镜头畸变图 图 12 右相机径向畸变图 图 13 右相机切向畸变图 对于图 11 到 13,图中的 0 点与左相机相同,即为右相机光学中心,图中的 箭头显示相机图像的畸变方向。图 11 右相机整体畸变模型中,该相机的中间及 偏左侧畸变不明显,若物体的图像在此则不易受畸变因素影响造成线条的弯曲; 图 12 右相机径向畸变模型中,该相机的畸变系数由中心向外增大,但右相机比 左相机在光轴中心附近有更大的区域畸变很小,因此位于右侧相机光学中心的 图像,其线条因受畸变造成的弯曲很小;图 13 右相机切向畸变模型中,箭头方 向显示该相机切向畸变的增大方向,在相机的左侧其切向畸变与径向畸变的方 向相反,使得整体畸变模型中,位于右相机图像左侧的线条受畸变影响较小。 OpenCV 标定结果: 在此列举的 OpenCV 标定结果是我双目视觉标定且优化后的结果,与 Matlab 的会有差异。 左侧相机的内参数矩阵: (9) 837.6291031.74.5829 右侧相机的内参数矩阵: (10 ) 837.4215036.9154.7827 该式(9)-(10)与式(1)相对应。而 Matlab 中的 cc 对应于式(1)中的相机光轴中心 在图像平面的投影坐标,fc 即为式(1)中的 和 。xsy 至此,讲解完了 OpenCV 与 Matlab 所对应的相机标定内参数矩阵的含义。 OpenCV 与 Matlab 标定中的差异: OpenCV 的标定参数中,对于镜头畸变采用的方法是 Brown 博士在 71 年发表的文章中 提到的;而 Matlab 中的镜头畸变参数采用基于 Heikkil 博士提出的方法,将非线性干扰因 素引入到内外参数的求解过程。 Heikkil 采用 的矩阵 来表示以上的两种畸变系数。根据5112123kpk Brown 的非线性模型, 和 表示镜头的径向畸变系数,通常只使用 两项, 只2,3 12,k3k 是针对即便较大的镜头(例如鱼眼镜头,其余情况下该系数值为 0) ,而 和 表示切向p 畸变系数,由式(11)和式(12)求解该矩阵,本文的畸变系数求解伴随在相机标定过程 中。 (11) 246radicl13il=xkrkry 其中, 是像平面上的任一点坐标值, 是进行径向畸变矫正后的坐(,) radiclrial(,)xy 标值, 是 作为光学中心畸变为 0 的点进行泰勒级数展开后得到的。246rr (12) 2tangeil1til=+xpyyrpy 其中, 是像平面上的任一点坐标值, 是进行切向畸变矫正后的坐(,)xytangeiltangeil(,)x 标值, 如式(11)的定义相同。246r 4.外参数的作用及其在相机标定中的意义 外参数定义了如图 2 所示的图像平面到世界坐标系的变换关系。而标定就是通过相机寻找 图像平面中如图 3 所示的标定板的特征点位置,所以得到的外参数是图像平面与标定板所 处平面的线性变换关系。在我的 2010-06-14 基于 Matlab 的双目视觉定位问题研究中,通 过 Matlab 标定工具箱产生的图 4 与图 5 就可以表达上述含义。 因此,对于不同的棋盘格标定板空间位置,必然对应于不同的外参数矩阵。同样的,在视 觉伺服中,雅可比矩阵也有同样的数学意义。对于视觉伺服,个人认为可以看些徐德的论 文入门。 5.OpenCV 标定程序说明 用于寻找图像中的棋盘格标定板的特征点: CvSize board_sz = cvSize( board_w, board_h ); IplImage* imgLeft=cvCreateImage(cvSize(imgL-width,imgL-height),imgL-depth,imgL- nChannels); IplImage* imgRight=cvCreateImage(cvSize(imgR-width,imgR-height),imgR- depth,imgR-nChannels); CvPoint2D32f* cornersLeft = new CvPoint2D32f board_n ; CvPoint2D32f* cornersRight = new CvPoint2D32f board_n ; int corner_countLeft, corner_countRight; cvResize(imgL,imgLeft,CV_INTER_LINEAR); cvResize(imgR,imgRight,CV_INTER_LINEAR); if(frame+ % board_dt = 0) /Find chessboard corners: int foundLeft = cvFindChessboardCorners( imgLeft, board_sz, cornersLeft, int foundRight = cvFindChessboardCorners( imgRight, board_sz, cornersRight, /Get Subpixel accuracy on those corners cvCvtColor(imgLeft, grayLeft, CV_BGR2GRAY);/if input is colorful then use this cvCvtColor(imgRight, grayRight, CV_BGR2GRAY); /cvCopy(image1, gray_image1); /cvCopy(image2, gray_image2); cvFindCornerSubPix(grayLeft, cornersLeft, corner_countLeft, cvSize(11,11),cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 );/寻找棋盘格标定板 的特征点 cvFindCornerSubPix(grayRight, cornersRight, corner_countRight, cvSize(11,11),cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 30, 0.1 ); /寻找棋盘格标定板 的特征点 /画出找到的特征点 cvDrawChessboardCorners(imgLeft, board_sz, cornersLeft, corner_countLeft, foundLeft); cvDrawChessboardCorners(imgRight, board_sz, cornersRight, corner_countRight, foundRight); if (corner_countLeft=board_n for( int i=step, j=0; jboard_n; +i,+j ) CV_MAT_ELEM(*image_pointsLeft, float,i,0) = cornersLeftj.x; CV_M
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工商银行2025长沙市秋招结构化面试经典题及参考答案
- 2025行业投资热点趋势报告
- 中国银行2025巴中市秋招笔试EPI能力测试题专练及答案
- 建设银行2025六安市半结构化面试15问及话术
- 建设银行2025海西蒙古族藏族自治州秋招无领导小组面试案例题库
- 班组安全自主管理培训课件
- 中国银行2025临沂市秋招笔试性格测试题专练及答案
- 班组安全管理与建设培训课件
- 交通银行2025七台河市秋招笔试EPI能力测试题专练及答案
- 农业银行2025西双版纳傣族自治州秋招笔试性格测试题专练及答案
- 《水利工程白蚁防治技术规程SLT 836-2024》知识培训
- 《专利及专利查询》课件
- 地下水污染控制与修复
- 智障个别化教育计划案例(3篇)
- 《欧盟的法律体系》课件
- 网络信息安全基础知识培训课件
- 江苏南京建邺高新区管委会社会公开招聘22人高频重点提升(共500题)附带答案详解
- 油气开采技术进步与挑战-洞察分析
- 第十八届地球小博士全国地理知识科普大赛介绍宣传组织动员备赛课件
- 【MOOC】国际金融学-湖南大学 中国大学慕课MOOC答案
- 《铁路轨道维护》课件-道岔检查作业
评论
0/150
提交评论