




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“三角函数的诱导公式(第一课时)”教学设计 一、教学内容与内容解析 “三角函数的诱导公式”是普通高中课程标准实验教科书人教 A 版必修 4 第一章第三节,其主要内容是三角函数的诱导公式中的公式二至公式六,是三 角函数的主要性质.学生在前面已经学习了诱导公式一和任意角的三角函数的定 义,这节课在此基础上,继续学习公式二至公式四.三角函数的诱导公式是圆的 对称性的“代数表示” ,利用对称性,让学生自主发现终边分别关于原点或坐标 轴对称的角的三角函数值之间的关系,使得“数”与“形”得到紧密结合,成 为一个整体.通过简单问题的提出、诱导公式的发现、问题的解决,体会由未知 到已知的转化,为以后的三角函数求值、化简、简单证明以及后续学习的三角 函数图像和性质等知识打好基础 诱导公式的主要用途是把任意角的三角函数值问题转化为求 090角 的三角函数值.诱导公式的推导过程,体现了“数形结合”和复杂到简单的“转 化”的数学思想方法,反映了从特殊到一般的归纳思维形式对培养学生的创 新意识、发展学生的思维能力,掌握数学的思想方法具有积极的作用. 诱导公 式的学习和推证过程还体现了三角函数之间的内部联系,是定义的延伸与应用, 在本章中起着承上启下的作用. 本节课的重点是诱导公式的探究,运用诱导公式进行简单函数式的求值与 化简,提高对数学知识之间(圆的对称性与三角函数性质)联系的认识,把过 去渗透在具体数学内容中的重要的方法以集中的、显性的形式呈现出来,使学 生更加明确这些方法,并能在今后的学习中有意识地使用它们. 二、教学问题诊断分析 在教师的组织和引导下学生以自主探索、动手实践、合作交流的方式进行 学习.在学习中了解和体验公式的发生、发展过程,让学生领会到诱导公式是前 面三角函数定义、单位圆对称性等知识的延续和拓展,应用迁移规律,引导学 生联想、类比、归纳推导公式. 在教学中可能会遇到如下几个问题: 1在利用多媒体引导学生从特殊到一般的学习过程中,部分学生认为只要 记住公式,会做题就可以,对公式的推导重视不够.为了尽量避免这种情况的出 现,我采用小组讨论制,考虑到学生的个体差异,把“强” 、 “中” 、 “弱”合理 搭配,安排组长监管收集讨论的结果,记录收集每一阶段的过程材料. 2角 的任意性,怎样向学生交代清楚是这节课我一直思考的问题.为了 解决这个问题我自己利用几何画板制作教学课件,通过用角终边的任意一点的 拖动,显示三角函数值在各个象限的变化,让学生明白角 不局限为第一象限 的角,它具有任意性,从而突破了难点. 3公式的记忆也是个难点.特别是十字口诀更是理解不深.对于幻灯片中的 公式,教师对照几何画板课件逐字逐句的分析,让其明白公式中的角是任意的, 而记忆时将其看成锐角.另外,反思学习过程时,体会角的终边的对称性与三角 函数值之间的关系也有利于公式的记忆. 三、目标和目标解析 (一)教学目标 1.能借助三角函数的定义及单位圆的对称性推导出诱导公式,会利用诱导公 式进行简单的三角函数式的求值与化简. 2.通过诱导公式的推导过程,体会数形结合及转化思想的运用. 3.培养学生由特殊到一般的归纳意识,学会用联系的观点看待问题. (二)目标解析 在初中学生已经学习过关于原点、x 轴以及 y 轴对称的点的坐标的内在联 系,并且前面学生能运用三角函数的定义和公式一进行三角函数求值,但对于 任意角的三角函数之间存在的联系还不清楚,或者只有一点模糊的感性认 识数学课程标准强调:“学生要获得必要的数学基础知识和基本技能,理解 数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴含的数 学思想和方法,以及它们在后续学习中的作用通过不同形式的自主学习、探 究活动,体验数学发现和创造的历程 ”所以,根据课程标准、教材的特点、对 本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标 根据教学内容的结构特征及教学目标,本节课采用了“问题发现 归纳类比”的教学方法和“自主探究小组合作”的学习方式.由问题驱 动,通过诱导公式二至四的探究,概括得到诱导公式的特点,提高对数学内部 关联的认识,理解求任意角三角函数值所体现出来的化归思想,培养学生的探 究能力. 教学目标实现过程: 1利用已有知识导出新的问题,创设问题情境,引起学生学习兴趣,激发 学生的求知欲,达到以旧拓新的目的. 2由特例 与 30 与 30, 与 30的关(803)(360)(18) 系提出问题,启发学生的思维,引导他们分析角的终边对称关系,利用定义进 行推导得到公式二,再利用多媒体动态演示,使学生对“ 为任意角”的认识 自然合理.之后如法炮制公式三、四,通过联想,类比、方法迁移,学生很轻松 的发现公式,每小组积极发言并且通过实物展台展示交流,发现任意角 与 , , 三角函数值的关系,体会了从特殊到一般的归纳推(180)(180) 理过程,使学生的思维得到科学训练,有助于培养学生的概括能力和创新能力. 3采用问题设疑,观察演示,步步深入,逐层引导,探究合作的教学方法, 旨在让学生充分感受和理解知识的产生和发展过程.在教师适时的启发点拨下, 学生在类比、归纳的过程中积极主动地去探索、发现数学规律(公式) ,培养学 生的创新意识和创新精神.通过引导学生探索并发现公式,将发现与证明合为一 体,体现了“数形结合”的思想方法. 4通过例 1 和变式,把诱导公式(一) 、 (二) 、 (三) 、 (四)的应用进一步 拓广,发展学生的思维能力和计算能力.例 2 的扩展让学生认识到公式的实用性 和学习的必要性. 本节课的教学设计力求体现 “问题性” 、 “科学性”与“思想性” ,以多媒 体为辅助手段,采用教师为主导学生为主体的启发式与探究式相结合的方法, 使学生快乐地学习. 3、教学支持条件分析 在进行本节课的教学时,学生已经学习了三角函数的定义、各象限角的三 角函数值的符号和公式一,这些内容是学生理解、归纳公式二至公式四的基础, 因此教学时应充分注意利用这一有利条件,引导学生多进行归纳与概括.另外, 信息技术的使用也为突破教学难点、启发学生思维、增加课堂容量提供了有力 的支持. 五、教学过程设计 (一)创设问题情境 师生活动:教师提问,学生思考、回答,学生口述的同时,教师加以引导 并用幻灯片展示 问题 1: (1)各象限内三角函数值的符号是什么?(只讨论正弦、余弦、正切) (2)任意角的三角函数的定义是什么? (3)公式一的内容与作用是什么? 问题 2:已知 如何求 的值.1sin30,2sin210,i3,sin150 教师引导:能否再把 0360间的角的三角函数,化为我们熟悉的 090间的角的三角函数问题呢?这节课我们就来学习和研究这样的问题. 【设计意图】通过复习旧知,为新知识的学习打下基础.特别是各象限三角 函数的符号,对于诱导公式记忆起关键作用.提出的新问题,引导学生进一步思 考,激起学生们的兴趣. (二)探索开发新结论 教师引导:为了解决以上问题,我们采用各个击破的方法.首先看 ,如果我们知道一个任意角 与( )三角函数值的关系,21038 问题就解决了. 探究一:任意角 与( )三角函数值的关系. 问题 3: 与 ( )角的终边关系如何?(互为反向延长线或关于原点对称) 设 与( )角的终边分别交单位圆于点 P1,P 2,则点 P1与 P2位置关 系如何?(关于原点对称) 设点 P1(x, y),那么点 P2的坐标怎样表示?( P2(x,y)) sin 与 sin( ),cos 与 cos( ),tan 与 tan( )的关 系如何? 经过探索,归纳成公式 -公式 二 sinsincocotata .1sin210si(3180)sin32 【设计意图】公式二的三个式子中, 是第一个解决的问sin)si( 题,由于方法及思路都是未知的,所以采取教师引导,师生合作共同完成办 法通过脚手架式的层层提问,引导学生自主推导诱导公式二,让学生体验证 明猜想的乐趣,凸显学生学习的主体地位.同时,试图通过环环相扣的问题给学 生传递“由宏观到微观考虑问题”的思维习惯,从而达到 “授人以渔”的目的. 后两个均由学生类比讨论完成 学生活动:小组讨论,代表发言交流 问题 4:公式中的角 仅是锐角吗? 【设计意图】课前提问的问题是以 引入的,之后的讨论只是用代数方法换30 成了一般形式的角 ,有些同学肯定会有这样的疑问,所以这个问题的解决好, 就是突破难点的关键.引导学生互相讨论,交流可以使学生记忆更深刻. 师生活动:演示几何画板课件,首先作出第一象限的任意角,之后得到相 应的三角函数值,拖动其终边上任意点,再让学生观察每一象限内三角函数值 的符号和它们之间存在的对称关系,从而验证了猜想,使学生更好的理解了这 个公式 【设计意图】通过多媒体演示,发现变化规律,从而总结出三角函数的诱 导公式 类比第一个问题的解决方法,我们再来解决后面的两个问题.观察 ,由公式一知 的终边与 的终边相同,所以我们必须30633030 知道一个任意角 与(- )三角函数值的关系. 探究二:任意角 与(- )三角函数值的关系. 问题 5: 与( )角的终边位置关系如何?(关于 x 轴对称) 设 与( )角的终边分别交单位圆于点 P1,P 2点 P1与 P2位置关系如何 (关于 x 轴对称 ) 设点 P1(x, y),则点 P的坐标怎样表示?P 2(x,y) sin 与 sin( ),cos 与 cos( ) ,tan 与 tan( )关系如何? 经过探索,归纳成公式 -公式 三 sinsicotata .1sin30si(630)sin()sin302 【设计意图】通过学生自主探究与合作交流,完成由角的终边点的对称性 得到公式的过程,充分调动学生学习的积极性和激发学生的参与、探究和体验 的欲望,让他们既动脑又动手,让学生参与教学活动. 让学生体验数与形的关系, 尝试自主探究的乐趣. 教师引导:那 ,我们须知 与( )的三角函数值的关15083 系,同学们继续发挥聪明才智解决它吧! 探究三: 与( )的三角函数值的关系 问题 6: 与( )角的终边位置关系如何?(关于 y 轴对称) 设 与( )角的终边分别交单位圆于点 P1,P 2点 P1与 P2位置关系如 何?(关于 y 轴对称) 设点 P1(x, y),则点 P的坐标怎样表示?P 2(-x,y) sin 与 sin( ),cos 与 cos( ) ,tan 与 tan( )关 系如何? 经过探索,归纳成公式 -公式 四 sinsicocotatan1sin150i(830)si2 【设计意图】与探究二的教法相同,学生分组讨论,尝试推导公式,教师 巡视,及时反馈、矫正、讲评采用合作学习有助于观察的多种方式的呈现, 通过学生多角度的观察所得到结论的交流,让学生感受数学美和发现规律(公 式)的喜悦,激发学生更积极地去寻找规律、认识规律.同时让学生感受到只要 做个有心人,发现规律并非难事. (三)总结概括新结论 师生活动:为了更好的使学生们把自己的研究成果记忆牢靠,师生共同大 声朗读这四组公式. 三角函数的诱导公式 公式一: sin(2)sin,co(2)costan(2)tan(Z),kkkk, 公式二: )., , 公式三: si()sic()csta(ta, , 公式四: nnoon)., , 说明:公式中的 指使公式两边有意义的任意一个角 问题 7:你能用一句话概括公式一、二、三、四吗? 为了让学生更好的记忆公式,通过幻灯片展示,猜想验证,如果把角 看成锐 角, 分别位于第一、二、三、四象限,由课前提问各象2,k 限内三角函数值的符号,学生可以试着叙述. 师生活动:总结概括公式一、二、三、四: 的三角函数值,等于 的同名函数值,前面加上,Z)(2k 一个把 看成锐角时原函数值的符号.公式特点:“函数名不变,符号看象限” 【设计意图】逐步理解十字口诀含义,并且训练学生的概括能力. (四)巩固应用结论 例 1 求下列三角函数值: 师生活动:学生板书,教师巡视,纠正错误 (1) ;(2) ;(3) ;(4)cos51sin16sin()3cos(204) 分析:先将不是 0 范围内角的三角函数,转化为 0 范围内的角的 三角函数(利用诱导公式一)或先将负角转化为正角然后再用诱导公式化 到 范围内角的三角函数的值.02 解:(1) 2cos5s(18045)cos (2) 3ini()in33 (3) 16 3si()sisi(5)(sin)2 (4) co204co0c6301 = s1s(8)os2 问题 8:用诱导公式可将任意角的三角函数化为锐角的三角函数,其一般步 骤是什么?(学生大胆说,互相讨论) 化负角的三角函数为正角的三角函数; 化大于 的正角的三角函数为 0 内的三角函数;22 化 0 内的三角函数为锐角的三角函数 变式:已知 是第三象限的角且 ,求 , (学1sin3sin()si() 生口答) 【设计意图】在得到诱导公式后,在此让学生独立去实践解决问题, ,一般 情况下,1、2 小题都能很快解决,只是到了第 3、4 小题时,条件变化稍复杂 一些,同学们就会出现思维障碍,需及时引导他们去进行角的转化,在实践中 体会诱导公式在解题过程中的应用,使任意一个角都转化为他们所熟知的锐角, 体会从未知到已知的化归思想,从而为总结出解题的一般步骤埋下伏笔.变式是 为了让学生进一步理解公式中角的任意性而设立. 例 2 化简 cos(180)sin360inco(18)A (学生板书) 解: ,si(180)si(0)sin(0)(sin)i ,cococo18co 所以原式= cosin1i()A 变式:已知 ,求 的值.635si()6 【设计意图】在例题的选取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 林下养鸡技术课件版
- 2025版高标准家政服务劳务用工合作协议
- 二零二五版城市综合体项目场地使用权出让合同书
- 二零二五年度租赁证办理与房屋租赁合同模板
- 2025版高端医疗设备采购与维修服务合同
- 二零二五年度环境安全与应急管理技术合同
- 二零二五年度板材贸易代理与分销合同
- 二零二五年餐饮行业绿色环保合作协议书
- 二零二五年度软件开发与测试IT外包服务协议
- 二零二五年POS机租赁与支付服务终端租赁合同
- GB/T 34652-2017全断面隧道掘进机敞开式岩石隧道掘进机
- GB/T 21872-2008铸造自硬呋喃树脂用磺酸固化剂
- 中国铂族金属供需发展趋势
- 风电施工合同模板
- GA/T 1567-2019城市道路交通隔离栏设置指南
- 先进制造技术 第2版 教学课件 ppt 作者 王隆太 第1章
- 氧化还原反应的类型
- 小学英语素材-1-5年级英语牛津词汇表(带音标) 牛津上海版
- DB11-T1836-2021 城市桥梁工程施工技术规程高清最新版
- 2023年唐山市开平区社区工作者招聘考试笔试题库及答案解析
- 用章申请表模板
评论
0/150
提交评论