




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中心对称和中心对称图形数学教案 1中心对称 把一个图形绕着某一点旋转 ,如果它能够与另一个图 形重合,那么就说这两个图形关于这个点对称,这个点叫 做对称中心,两个图形关于点对称也称中心对称,这两个 图形中的对应点,叫做关于中心的对称点 中心对称的两个图形具有如下性质:关于中心对称的 两个图形全等;关于中心对称的两个图形,对称点的连线 都过对称中心,并且被对称中心平分 判断两个图形成中心对称的方法是:如果两个图形的 对应点连线都经过某一点,并且被这一点平分,那么这两 个图形关于这一点对称 2中心对称图形 把一个图形绕某一点旋转 ,如果旋转后的图形能够和 原来的图形互相重合,那么这个图形叫做中心对称图形, 这个点就是它的对称中心 矩形、菱形、正方形、平行四边形都是中心对称图形, 对角钱的交点就是它们的对称中心;圆是中心对称图形, 圆心是对称中心;线段也是中心对称图形,线段中点就是 它的对称中心 重点、难点分析: 本节课的重点是中心对称的概念、性质和作已知点关 于某点的对称点。因为概念是推导三个性质的主要依据、 性质是今后解决有关问题的理论依据;而作已知点关于某 个点的对称点又是作中心对称图形的关键。 本节课的难点是中心对称与中心对称图形之间的联系 和区别。从概念角度来说,中心对称图形和中心对称是两 个不同而又紧密相联的概念。从学生角度来讲,在学习轴 对称时,有相当一部分学生对轴对称和轴对称图形的概念 理解上出现误点。因此本节课的难点是中心对称与中心对 称图形之间的联系和区别。 本节内容和生活结合较多,新课导入可考虑以下方法: 从相似概念引入:中心对称概念与轴对称概念比较相 似,中心对称图形与轴对称图形比较相似,可从轴对称类 比引入, 从汉字引入:有许多汉字都是中心对称图形,如“田” 、 “日” 、 “曰” 、 “中” 、 “申” 、 “王” ,等等,可从汉字引入, 从生活实例引入:生活中有许多中心对称实例和中心 对称图形,如飞机的螺旋桨,风车的风轮,纽结,雪花, 等等,可从生活实例引入, 从商标引入:各公司、企业的商标中有许多中心对称 实例和中心对称图形,如联想,联合证券,湘财证券,中 国工商银行,中国银行,等等,可从这些商标引入, 从车标引入:各品牌汽车的车标中有许多都是中心对 称图形,如奥迪,韩国现代,本田,富康,欧宝,宝马, 等等,可从车标引入, 从几何图形引入:学习过的许多图形都是中心对称图 形,如圆,平行四边形,矩形,菱形,正方形,等等,可 从几何图形引入, 从艺术品引入:艺术品中有许多都是呈中心对称或是 中心对称图形,如下图,可从艺术品引入。 1知道中心对称的概念,能说出中心对称的定义和关 于中心对称的两个图形的性质。 2会根据关于中心对称图形的性质定理 2 的逆定理来 判定两个图形关于一点对称;会画与已知图形关于一点成 中心对称的图形。 此外,通过复习图形轴对称,并与中心对称比较,渗 透类比的思想方法;用运动的观点观察和认识图形,渗透 旋转变换的思想。 想一想:怎样的两个图形叫做关于某直线成轴对称? 成轴对称的两个图形有什么性质? 画一画:如图 4。7-1(1),已知点 P 和直线 L,画出点 P 关于直线 L 的对称点 P;如图 4。7-1(2),已知线段 MN 和直线 a,画出线段 MN 关于直线 a 的对称线段 MN。 (通过画图形进一步巩固和加深对轴对称的认识) 上述问题由学生回答,教师作必要的提示,并归纳总 结成下表: 轴对称 定义三要点 123 有一条对称轴-直线图形沿轴对折,即翻转 180 度翻 转后与另一图形重合 性质 123 两个图形是全等形对称轴是对应点连线的垂直平分线 对应线段或延长线相交,交点在对称轴上 观察与思考:图 4。7-2 所示的图形关于某条直线成轴 对称吗?如果是,画出对称轴,如果不是,说明理由。 问题 1:你能举出 12 个实例或实物,说明它们也具 有上面所说的特性吗? 说明:学生自己举例有助于他们感性地认识中心对称 的意义。然后,教师指出:具有这种特性的图形叫做中心 对称图形,并介绍对称中心,对称点等概念。 问题 2:你能给“中心对称”下一个定义吗? 说明与建议:学生下定义会有困难,教师应及时修正, 并给出明确的定义,然后指出定义中的三个要点:有一个 对称中心点;图形绕中心旋转 180 度;旋转后与另一 图形重合。把这三要点填入引导性材料中的空表内,在顶 空格内写上“中心对称”字样,以利于写“轴对称”进行 比较。 练一练:在图 4。73 中,已知ABC 和EFG 关于点 O 成中心对称,分别找出图中的对称点和对称线段。 说明与建议:教师可演示ABC 绕点 O 旋转 180 度后与 EFG 重合的过程,让学生说出点 E 和点 A,点 B 和点 F, 点 C 和点 G 是对称点;线段 AB 和 EF、线段 AC 和 EG,线段 BC 和 FG 都是对称线段。教师还可向学生指出,图 4。73 中,点 A、O、E 在一条直线上,点 C、O、G 在一条直线上, 点 B、O、F 在一条直线上,且 AO=EO,BO=FO,COGO。 问题 3:从上面的练习及分析中,可以看出关于中心对 称的两个图形具有哪些性质? 说明与建议:引导学生总结出关于中心对称的两个图 形的性质:定理 l-关于中心对称的两个图形是全等形; 定理 2关于中心对称的两个图形,对称点连线都经过对 称中心,并且被对称中心平分。 问题 4:定理 2 的题设和结论各是什么?试说出它的逆 命题。 说明与建议:学生解答此题有困难,教师要及时引导。 特别是叙述命题时,学生常常照搬“对称点” 、 “对称中心” 这些词语,教师应指出:由于没有“两个图形关于中心对 称”的前提,所以不能使用“对称点” 、 “对称中心”这样 的词语,而要改为“对应如” 、 “某一点” 。最后,教师应完 整地叙述这个逆命题-如果两个图形的对应点连线都经过 某一点,并且被这一点平分,那么这两个图形关于点对称。 问题 5:怎样证明这个逆命题是正确的? 说明与建议:证明过程应在教师的引导下,师生共同 完成。由已知条件对应点的连线都经过某一点,并且 被这一点平分,可以知道:若把其中一个图形绕着这点旋 转 180 度,它必定于另一个图形重合,因此,根据定义可 以判定这两个图形关于这一点对称。这个逆命题即为逆定 理。根据这个逆定理,可以判定两个图形关于一点对称, 也可以画出已知图形关于一点的对称图形。 练一练:访画出图 474 中,线段 PQ 关于点 O 的对 称线段 PQ。 连结 PO,延长 PO 到 P,使 OPOP,点 P就是点 P 关于点 O 的对称点,连结 QO,延长 QO 到 Q,使 QQ=OQ,点 Q就是点 Q 的对称点,则 PQ就是线段 PQ 关于 O 点的对称线段。教师应指出:画一个图形关于某点 的中心对称图形,关键是画“对称点” 。比如,画一个三角 形关于某点的中心对称三角形,只要画出三角形三个顶点 的对称点,就可以画出所要求的三角形。 ) 课本例题 说明:教师应让学生读题分析,给每个学生印发一张 印有图 4。7-5 的纸,让学生动手画图。画好图后让学生总 结:画多边形的中心对称图形只要画出多边形各顶点的对 称点,即能画出所求的对称图形。 课本例后练习第 1、2 题。 小题可用定义说明,第 2 题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司春季种植活动方案
- 2025年语言学基础认知考试题及答案
- 2025年专业英语与外语能力测试的知识考核考试题及答案
- 2025年项目风险管理课程考试题及答案
- 2025年物业管理师考试试题及答案
- 2025年司法考试试题及答案
- 2025年数字创新管理师职业资格考试试卷及答案
- 2025年计算机视觉与图像处理理论考试试题及答案
- 2025年高考数学科目模拟试题及答案
- 2025年档案管理与信息资源考试试卷及答案
- ESG趋势下企业财务管理新挑战
- 2024年公安机关理论考试题库500道(基础题)
- 2024年11月-矿山隐蔽致灾因素普查
- DBJ51T 163-2021 成都轨道交通设计防火标准
- 加热炉安全操作规程培训课件
- 学校红十字会工作手册
- 特种设备隐患排查与整治
- 2024年人教版七年级下册生物期末检测试卷及答案
- 药剂师知识科普大赛单选题100道及答案解析
- 荆州市国土空间总体规划(2021-2035年)
- 2024年变电设备检修工(高级技师)技能鉴定理论考试题库(含答案)
评论
0/150
提交评论