




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
电磁场与波课后思考题电磁场与波课后思考题 1-1 什么是标量与矢量?举例说明. 仅具有大小特征的量称为标量.如:长度,面积,体积,温度,气压,密度,质量,能量及电位移等. 不仅具有大小而且具有方向特征的量称为矢量.如:力,位移,速度,加速度,电场强度及磁场 强度. 1-2 矢量加减运算及矢量与标量的乘法运算的几何意义是什么? 矢量加减运算表示空间位移. 矢量与标量的乘法运算表示矢量的伸缩. 1-3 矢量的标积与矢积的代数定义及几何意义是什么? 矢量的标积:,A 矢量的模与矢量 B 在矢量 A 方向上的投影大小的乘积. 矢积: 矢积的方向与矢量 A,B 都垂直,且 由矢量A旋转到B,并与矢积构成右 旋关系,大小为 1-4 什么是单位矢量?写出单位矢量在直角坐标中的表达式. 模为 1 的矢量称为单位矢量. 1-5 梯度与方向导数的关系是什么?试述梯度的几何意义,写出梯度在直角坐标中的表示式. 标量场在某点梯度的大小等于该点的最大方向导数, 方向为该点具有最大方向导数的方向. 梯度方向垂直于等值面,指向标量场数值增大的方向 在直角坐标中的表示式: 1-6 什么是矢量场的通量?通量值为正,负或零时分别代表什么意义? 矢量 A 沿某一有向曲面 S 的面积分称为矢量 A 通过该有向曲面 S 的通量,以标量表示, 即通量为零时表示该闭合面中没有矢量穿过. 通量为正时表示闭合面中有源;通量为负时表示闭合面中有洞. 1-7 给出散度的定义及其在直角坐标中的表示式. 散度:当闭合面 S 向某点无限收缩时,矢量 A 通过该闭合面 S 的通量 与该闭合面包围的体积之比的极限称为矢量场 A 在该点的散度。 直角坐标形式: 1-8 试述散度的物理概念,散度值为正,负或零时分别表示什么意义? 物理概念:通过包围单位体积闭合面的通量。 散度为正时表示辐散,为负时表示辐合,为零时表示无能量流过. 1-9 试述散度定理及其物理概念. 散度定理:建立了区域V 中的场和包围区域 V 的闭合面 S 上的场之间的关系 cosBABABABABA zzyyxx =+= zyx zyx zyx BBB AAA eee BA =sinBAez sinBA a e z z z zy y y yx x x x e e e ee e e ee e e e coscoscoscoscoscoscoscoscoscoscoscos+ + + + + + += = = = z z z zy y y yx x x x e e e e z z z z e e e e y y y y e e e e x x x x + + + + + + + + = = = = = = = = S S S S S S S SA A A A d d d d V S V d limdiv 0 = S S S SA A A A A A A A z z z z A A A A y y y y A A A A x x x x A A A A A A A Adivdivdivdiv z z z z y y y y x x x x + + + + + + + + = = = = A A A A = = = = 物理概念: 散度定理建立了区域 V 中的场和包围区域 V 的闭合面 S 上的场之间的关 系。 1-10什么是矢量场的环量?环量值为正,负或零时分别代表什么意义? 矢量场 A 沿一条有向曲线 l 的线积分称为矢量场 A 沿该曲线的环量,即: 若在闭合有向曲线 l 上,环量为正,则表示矢量场 A 的方向处处与线元 dl 的方向保 持一致;环量为负,刚表示处处相反;环量为零,则表示曲线 l 不包含矢量场 A. 1-11给出旋度的定义及其在直角坐标中的表示式. 若以符号 rotA 表示矢量 A 的旋度,则其方向是使矢量 A 具有最大环量强度的方向, 其大小等于对该矢量方向的最大环量强度,即 1-12试述旋度的物理概念,旋度值为正,负或零时分别表示什么意义? 矢量场的旋度大小可以认为是包围单位面积的闭合曲线上的最大环量。 1-13试述斯托克斯定理及其物理概念. 或 物理概念: 建立了区域 S 中的场和包围区域 S 的闭合曲线l 上的场之间的关系 1-14什么是无散场和无旋场?任何旋度场是否一定是无散的,任何梯度场是否一定是无旋的? 无散场:散度处处为零的矢量场 无旋场:旋度处处为零的矢量场 任何旋度场一定是无散场; 任何梯度场一定是无旋场. 1-15试述亥姆霍兹定理,为什么必须研究矢量场的散度和旋度? 若矢量场 F(r) 在无限区域中处处是单值的, 且其导数连续有界,源分布在有限区域 V 中,则当矢量场的散度及旋度给定后,该矢量场 F(r) 可以表示为 式中 该定理表明任一矢量场均可表示为一个无旋场与一个无散场之和,所以矢量场的散度 及旋度特性是研究矢量场的首要问题 2-1电场强度的定义是什么?如何用电场线描述电场强度的大小及方向? 电场对某点单位正电荷的作用力称为该点的电场强度,以E表示。 用曲线上各点的切线方向表示该点的电场强度方向,这种曲线称为电场线。 电场线的疏密程度可以显示电场强度的大小。 2-2 给出电位与电场强度的关系式,说明电位的物理意义。 = = = = l l l l l l l lA A A A d d d d S S S S l l l lA A A A e e e eA A A A l l l l S S S S n n n n d d d d limlimlimlimrotrotrotrot maxmaxmaxmax 0 0 0 0 = = = = zyx zyx AAA zyx eee = A A A A = = = = = l l l lS S S S l l l lA A A AS S S SA A A A d d d d d d d d) ) ) )rotrotrotrot( ( ( ( = = = = l l l lS S S S l l l lA A A AS S S SA A A A d d d d d d d d) ) ) )( ( ( ( 0 0 0 0) ) ) )( ( ( (= = = = A A A A 0 0 0 0) ) ) )( ( ( (= = = = ) ) ) )( ( ( () ) ) )( ( ( () ) ) )( ( ( (r r r rA A A Ar r r rr r r rF F F F + + + + = = = = = = = = V V V V V V V V F F F F r r r rd d d d r r r rr r r r ) ) ) )r r r r( ( ( ( 4 4 4 4 1 1 1 1 ) ) ) )( ( ( ( V V V V V V V V = = = = d d d d r r r rr r r r ) ) ) )r r r r( ( ( (F F F F 4 4 4 4 1 1 1 1 ) ) ) )r r r r( ( ( (A A A A = = = =E E E E 静电场中某点的电位,其物理意义是单位正电荷在电场力的作用下,自该点沿任一条路 径移至无限远处过程中电场力作的功。 2-3 什么是等位面? 电位相等的曲面称为等位面。 2-4 什么是高斯定理? 式中0为真空介电常数。 称为高斯定理, 它表明真空中静电场的电场强度通过任一封闭曲面的电通等于该封闭曲面所 包围的电量与真空介电常数之比。 2-5 给出电流和电流密度的定义。 电流是电荷的有规则运动形成的。单位时间内穿过某一截面的电荷量称为电流。 分为传导电流和运流电流两种。 传导电流是导体中的自由电子(或空穴)或者是电解液中的离子运动形成的电流。 运流电流是电子、离子或其它带电粒子在真空或气体中运动形成的电流。 电流密度:是一个矢量,以J表示。电流密度的方向为正电荷的运动方向,其大小为单 位时间内垂直穿过单位面积的电荷量。 2-6 什么是外源及电动势? 外源是非电的能源,可以是电池,发电机等。 外电场由负极板N到正极板P的线积分称为外源的电动势,以e表示,即 达到动态平衡时,在外源内部 E E E EE E E E= ,所以上式又可写为 2-7 什么是驻立电荷?它和静止电荷有什么不同? 极板上的电荷分布虽然不变, 但是极板上的电荷并不是静止的。 它们是在不断地更替中 保持分布特性不变,因此,这种电荷称为驻立电荷。驻立电荷是在外源作用下形成的,一旦 外源消失,驻立电荷也将随之逐渐消失。 2-8 试述电流连续性原理。 如果以一系列的曲线描述电流场,令曲线上各点的切线方向表示该点电流密度的方向, 这些曲线称为电流线。电流线是连续闭合的。它和电场线不同,电流线没有起点和终点, 这 一结论称为电流连续性原理。 2-9 给出磁通密度的定义。 描述磁场强弱的参数是磁通密度, 又可称磁感应强度这个矢量 B 就是磁 通密度,单位 T(特) 2-10 运动电荷,电流元以及小电流环在恒定磁场中受到的影响有何不同? 运动电荷受到的磁场力始终与电荷的运动方向垂直, 磁场力只能改变其运动方向, 磁场 与运动电荷之间没有能量交换。 = = = = S S S S q q q q S S S SE E E E 0 0 0 0 d d d d F/m)(10 36 1 m)/F(10854187817 . 8 912 0 = S S S SJ J J JI I I I d d d dd d d d = = = = t q I d d = l l l lE E E Ee e e e P P P P N N N N d d d d = = = = l l l lE E E Ee e e e P P P P N N N N d d d d = = = = B B B Bv v v vq q q q = = = =F F F F B B B Bv v v vq q q q = = = =F F F F 当电流元的电流方向与磁感应强度B平行时,受力为零;当电流元的方向与B垂直 时,受力最大,电流元在磁场中的受力方向始终垂直于电流的流动方向。 当电流环的磁矩方向与磁感应强度B的方向平行时, 受到的力矩为零; 当两者垂直时, 受到的力矩最大 2-11 什么是安培环路定理?试述磁通连续性原理。 0为真空磁导率 , 7 0 104 = (H/m),I为闭合曲线包围的电流。 安培环路定理表明:真空中恒定磁场的磁通密度沿任意闭合曲面的环量等于曲线包围的 电流与真空磁导率的乘积。 真空中恒定磁场通过任意闭合面的磁通为 0。 磁场线是处处闭合的,没有起点与终点,这种特性称为磁通连续性原理。 2-12 什么是感应电动势和感应磁通? 感应电场强度沿线圈回路的闭合线积分等于线圈中的感应电动势,即 穿过闭合线圈中的磁通发生变化时,线圈中产生的感应电动势e为 线圈中感应电流产生的感应磁通方向总是阻碍原有刺磁通的变化,所以感应磁通又称反磁 通。 2-13 什么是电磁感应定律? 称为电磁感应定律,它表明穿过线圈中的磁场变化时,导线中产 生感应电场。它表明,时变磁场可以产生时变电场。 3-1、试述真空中静电场方程及其物理意义。 积分形式:sEdS=q/ lEdL=0 微分形式: !E=/ !E=0 物理意义:真空中静电场的电场强度在某点的散度等于该点的电荷体密度与真空介电 常数之比;旋度处处为零。 3-2、已知电荷分布,如何计算电场强度? 根据公式 E(r)=v (r)(r-r)dV/4r-r3 已知电荷分布可直接计算其电场强度。 3-3、电场与介质相互作用后,会发生什么现象? 会发生极化现象。 3-7、试述静电场的边界条件。 在两种介质形成的边界上,两侧的电场强度的切向分量相等,电通密度的法向分量相 等;在两种各向同性的线性介质形成的边界上,电通密度切向分量是不连续的,电场强度的 法向分量不连续。 介质与导体的边界条件:enE=0 enD=s:若导体周围是各向同性的线性介质,则 B B B Bl l l lI I I IF F F F = = = = d d d d ISBBIlIlBlFlT= 2 ) ) ) )( ( ( (B B B BS S S SI I I IT T T T = = = =S S S SI I I I = = = =mmmmB B B BT T T T = = = = mmmm I I I Il l l lB B B B l l l l = = = = 0 0 0 0 d d d d = = = = S S S S S S S SB B B B 0 0 0 0d d d d t t t t l l l lE E E E l l l l d d d d d d d d d d d d = = = = t e d d = = = = = S S S Sl l l l S S S SB B B B t t t t l l l lE E E E d d d dd d d d En=s/ ?/?n=-s/。 3-8、自由电荷是否仅存于导体的表面 由于导体中静电场为零,由式D=D=p 得知,导体内部不可能存在自由电荷的体分布。 因此,当导体处于静电平衡状态时,自由电荷只能分布在导体的表面。 3-9、处于静电场中的任何导体是否一定是等为体 由于导体中不存在静电场,导体中的电位梯度=0,这就意味着到导体中电位不随空 间变化。所以,处于静电平衡状态的导体是一个等位体。 3-10、电容的定义是什么?如何计算多导体之间的电容? 由物理学得知,平板电容器正极板上携带的电量q与极板间的电位差U的比值是一 个常数,此常数称为平板电容器的电容电容 3-11、如何计算静电场的能量?点电荷的能量有多大?为什么? 已知在静电场的作用下,带有正电荷的带电体会沿电场方向发生运动,这就意味着电 场力作了功。静电场为了对外作功必须消耗自身的能量,可见静电场是具有能量的。如果静 止带电体在外力作用下由无限远处移入静电场中, 外力必须反抗电场力作功, 这部分功将转 变为静电场的能量储藏在静电场中,使静电场的能量增加。由此可见,根据电场力作功或外 力作功与静电场能量之间的转换关系,可以计算静电场能量。 点电荷的能量为: 设带电体的电量Q是从零开始逐渐由无限远处移入的。由于开始时并无电场,移入第一个 微量 dq时外力无须作功。当第二个 dq移入时,外力必须克服电场力作功。若获得的电位 为,则外力必须作的功为dq,因此,电场能量的增量为dq。已知带电体的电位随 着电荷的逐渐增加而不断升高,当电量增至最终值Q时,外力作的总功,也就是电量为Q 的带电体具有的能量为 已知孤立导体的电位等于携带的电量q与电容C的之比, 即 代入上式,求得电量为Q的孤立带电体具有的能量为 3-12 如何计算电场力?什么是广义力及广义坐标?如何利用电场线判断电场力的方向? 为了计算具有一定电荷分布的带电体之间的的电场力,通常采用虚位移法 广义力:企图改变某一个广义坐标的力 广义坐标:广义坐标是不特定的坐标。描述完整系统(见约束)位形的独立变量 利用电场线具有的纵向收缩与横向扩张的趋势可以判断电场力的方向。 3-13 试述镜像法原理及其应用 是以一个或几个等效电荷代替边界的影响, 将原来具有边界的非均匀空间变成无限大的 均匀自由空间,从而使计算过程大为简化。静电场惟一性定理表明。只要这些等效电荷的引 入后,原来的边界条件不变,那么原来区域中的静电场就不会改变,这是确定等效电荷的大 小及其位置的依据。这些等效电荷通常处于镜像位置,因此称为镜像电荷,而这种方法称为 镜像法。 应用:第一,点电荷与无限大的导体表面 第二,电荷与导体球 C C C C Q Q Q Q WWWW 2 2 2 2 e e e e 2 2 2 2 1 1 1 1 = = = = q q q qq q q qWWWW Q Q Q Q e e e e d d d d ) ) ) )( ( ( ( 0 0 0 0 = = = = C C C Cq q q q= = = = C C C C Q Q Q Q WWWW 2 2 2 2 e e e e 2 2 2 2 1 1 1 1 = = = = I I I Il l l lB B B B l l l l = = = = 0 0 0 0 d d d d = = = = S S S S S S S SB B B B 0 0 0 0d d d d 7 0 104 = J J J JB B B B 0 0 0 0 = = = = 第三,线电荷与带电的导体圆柱 第四,点电荷与无限大的介质表面 3-15 给出点电荷与导体球的镜像关系 若导体球接地,导体球的电位为零。为了等效导体球边界的影响,令镜像点电荷q位 于球心与点电荷q的连线上。那么,球面上任一点电位为 可见,为了保证球面上任一点电位为零,必须选择镜像电荷为 为了使镜像电荷具有一个确定的值,必须要求比值 rr 对于球面上任一点均具有同一数 值。由图可见,若要求三角形 OPq与 OqP相似,则 = f a r r =常数。由此获知镜像 电荷应为,镜像电荷离球心的距离d应为这样,根据q及q即可计算球 外空间任一点的电场强度。 若导体球不接地, 则位于点电荷一侧的导体球表面上的感应电荷为负值, 而另一侧表面上的 感应电荷为正值。导体球表面上总的感应电荷应为零值。因此,对于不接地的导体球,若引 入上述的镜像电荷q后,为了满足电荷守恒原理,必须再引入一个镜像电荷q“,且必须令 显然,为了保证球面边界是一个等位面,镜像电荷q“必须位于球心。事实上, 由于导体球不接地,因此,其电位不等零。由q及q在球面边界上形成的电位为零,因此 必须引入第二个镜像电荷q“以提供一定的电位。 4-1、什么是弛豫时间?它与导电介质的电参数关系如何? 4-2、给出恒定电流场方程式的积分形式和微分形式。 积分形式: 微分形式: 4-3、试述恒定电流场的边界条件。 在两种导电介质的边界两侧,电流密度矢量的切向分量不等,但其法向分量连续。 4-4、如何计算导电介质的热耗? 单位体积中的功率损失: 总功率损失: 4-5、如何计算导电介质的电阻? 导电介质的电位满足拉普拉斯方程,利用边界条件求出导电介质中的电位,根据 求出电流密度,进一步求出电流.从而求电阻。 5-1、试述真空中恒定磁场方程式及其物理意义 物理意义:安培环路定理,式中0为真空磁导率, (H/m),I为闭合曲线包围的电流。 真空中恒定磁场方程的微分形式为: 左式表明,真空中某点恒定磁场的磁感应强度的旋度等于该点的电流密度与真空磁导率 的乘积。右式表明,真空中恒定磁场的磁感应强度的散度处处为零。可见,真空中恒定磁场 是有旋无散的。 0 0 0 0= = = = B B B B 0 0 0 0= = = = J J J J 0 0 0 0 = = = = J J J J = = = = S S S S S S S SJ J J J 0 0 0 0d d d d = = = = l l l l l l l lJ J J J 0 0 0 0d d d d J J J JE E E Ep p p pl l l l = = = = UIVpP l =d E E E EJ J J J = = = = = = = = S S S S S S S SJ J J JI I I I d d d d 0 0 0 0 2 2 2 2 = = = = r r r r q q q q r r r r q q q q + + + += = = = 4 4 4 4 4 4 4 4 q q q q r r r r r r r r q q q q = = = = q f a q= f a d 2 = qq= 5-2、已知电流分布,如何求解恒定磁场? 利用 5-3、给出矢量磁位满足的微分方程式。 矢量磁位: 其满足矢量泊松方程: 无源区满足矢量拉普拉斯方程: 5-4、磁场与介质相互作用后,会发生什么现象?什么是顺磁性介质、抗磁性介质和铁磁性 介质? 会发生磁化现象。 顺磁性介质顺磁性介质:正常情况下原子中的合成磁矩不为零,宏观合成磁矩为零,在外加磁场 作用下,磁偶极子的磁矩方向朝着外加磁场方向转动,因此使得合成磁场增强的介质 抗磁性介质抗磁性介质:正常情况下原子中的合成磁矩为零,当外加磁场时电子发生进动,产生 的附加磁矩方向总是与外加磁场方向相反,导致合成磁场减弱的介质。 铁磁性介质铁磁性介质:在外磁场作用下,大量磁畴发生转动,各个磁畴方向趋向一致,且畴界 面积还会扩大,因而产生较强的磁性的介质。 5-5、什么是磁化强度?它与磁化电流的关系如何? 单位体积中磁矩的矢量和称为磁化强度。磁化电流密度以 J 表示。 体分布磁化电流:面分布磁化电流: 5-6、试述介质中恒定磁场方程式及其物理意义。什么是磁场强度及磁导率?相对磁导率是 否可以小于一? 它表明媒质中的磁场强度沿任一闭合曲线的环量等于闭合曲线包围的传导电 流。 该式称为媒质中安培环路定律的微分形式。 它表明媒质中某点磁场强度的旋 度等于该点传导电流密度。 5-7、什么是均匀与非均匀、线性与非线性、各向同性与各向异性的磁性能?三者之间有无 联系? 若介质的磁导率不随空间变化,则成为磁性能均匀介质。反之则称为磁性非均匀介质。 若磁导率与外加磁场强度的大小及方向均无关, 磁通密度与磁场强度成正比则称为磁性能各 向同性的线性介质。 对于均匀线性的各向同性介质, 只要将真空中恒定磁场方程式中的真空 磁导率环卫介质磁导率即可应用。 5-8、试述恒定磁场的边界条件。 恒定磁场的磁场强度切向分量是连续的, 法向分量是不连续的; 磁通密度的法向分量是 连续的,切向分量不连续。 理想磁导体的边界条件:enH=0. 5-9、理想导电体(=)中是否可以存在恒定磁场?理想磁导体(=)中是否可以存 在静电场? V V V V r r r rr r r r r r r rr r r rr r r rJ J J J r r r rB B B B V V V V = = = = d d d d ) ) ) ) ( ( ( () ) ) )( ( ( ( 4 4 4 4 ) ) ) )( ( ( ( 3 3 3 3 0 0 0 0 S S S S r r r rr r r r r r r rr r r rr r r rJ J J J r r r rB B B B S S S S S S S S = = = = d d d d ) ) ) )( ( ( () ) ) )( ( ( ( 4 4 4 4 ) ) ) )( ( ( ( 3 3 3 3 0 0 0 0 = = = = l l l l r r r rr r r r r r r rr r r rl l l lI I I I r r r rB B B B 3 3 3 3 0 0 0 0 ) ) ) )( ( ( (d d d d 4 4 4 4 ) ) ) )( ( ( ( MMMM = = = = J J J J n n n n e e e eMMMM = = = = S S S S J J J J I I I Il l l lH H H H l l l l = = = = d d d d J J J JH H H H = = = = A A A A = = = =B B B B 0 0 0 0 2 2 2 2 = = = = A A A A J J J JA A A A 0 0 0 0 2 2 2 2 = = = = = = = = l l l l l l l lA A A A d d d d 磁导率为无限大的媒质称为理想导磁体。在理想导磁体中不可能存在磁场强度。 5-10、介电常数、电导率及磁导率分别描述介质什么特性? 介质的极化性能、导电性能及磁化性能 5-11、什么是自感与互感?如何进行计算? 两个回路,回路电流分别为 I1 和 I2,本身产生的磁通链分别为11 和22,在对方中产 生的磁通链分别为12 和21,则称 L11=11/I1 为回路 L1 的自感,M12=12/I2 为回路 L2 对 L1 的互感。互感可正可负,其值正负取决于两个线圈的电流方向,但自感始终为正值。 5-13、如何计算载流系统的磁场能量? 6-1什么是位移电流?它与传导电流及运流电流的本质区别是什么?为什么在不良导体中位 移电流有可能大于传导电流? 位移电流密度是电通密度的时间变化率,或者说是电场的时间变化率。 自由电子在导体中或电解液中形成的传导电流以及电荷在气体中形成的运流电 流都是电荷运动形成的,而位移电流不是电荷运动,而是一种人为定义的概念。 在静电场中,由于,自然不存在位移电流。在时变电场中,电场变化愈快, 产生的位移电流密度也愈大。若某一时刻电场的时间变化率为零,即使电场很强,产 生的位移电流密度也为零,故在不良导体中位移电流有可能大于传导电流。 6-2 试述麦克斯韦方程的积分形式与微分形式试述麦克斯韦方程的积分形式与微分形式, , , ,并解释其物理意义并解释其物理意义. . . . 物理意义:时变电磁场中的时变电场是有旋有散的,时变磁场是有旋无散的,但是,时变 电磁场中的电场与磁场是不可分割的, 因此时变电磁场是有旋有散场。 在电荷及电流都不存 在的无源区中, 时变电磁场是有旋无散的。 时变电场的方向与时变磁场的方向处处相互垂直。 6-3 什么是介质的特性方程? 6-4 试述时变电磁场的边界条件,是否在任何边界上电场强度的切向分量及磁通密度的法向 分量总是连续的? 是 第一, 在任何边界上电场强度的切向分量是连续的 第二, 在任何边界上,磁感应强度的法向分量是连续的 第三,电位移的法向分量边界条件与媒质特性有关 第四,磁场强度的切向分量边界条件与媒质特性有关 = = N j l j j IW 1 m d 2 1 j j j j l l l lA A A A = = = = = = = = N N N N j j j j j j j jj j j j I I I IWWWW 1 1 1 1 mmmm 2 2 2 2 1 1 1 1 t t t t J J J J = = = = E E E ED D D D = = = =H H H HB B B B = = = =J J J JE E E EJ J J J + + + += = = = 0 0 0 0) ) ) )( ( ( (e e e e 1 1 1 12 2 2 2n n n n = = = = E E E EE E E E 0 0 0 0) ) ) )( ( ( (e e e e 1 1 1 12 2 2 2n n n n = = = = B B B BB B B B S =)( 12n D D D D D De e S J =)( 12n H H H HH H H He e 2t2t2t2t1t1t1t1t E E E EE E E E= = = = 2nn1 BB= S S S S D D D DD D D D 1n1n1n1n2n2n2n2n = = = = S S S S J J J JH H H H = = = = n n n n e e e e 6-5 什么是标量位和矢量位?它们有何用途? 矢量位: 已知时变磁场是无散场,则它可以表示为矢量场 A 的旋度,即可令 式中 A 称为矢量位 标量位: 矢量场为无旋场。因此它可以用一个标量场的梯度来示. 即可 令. 式中称为标量位. 用途: 时变电磁场的场强与场源的关系比较复杂,直接求解需要较多的数学知识。为了 简化求解过程,引入标量位与矢量位作为求解时变电磁场的两个辅助函数 6-6 给出标量位和矢量位满足的微分方程及其解. 矢量位: 标量位: 6-7 什么是洛伦兹条件?为什么它与电荷守恒定律是一致的? 洛伦兹条件:令 时变电磁场必须符合电荷守恒定律因此,说明A与关系的洛伦兹条件 一定符合电荷守恒定律. 6-8 什么是电磁辐射?为何时变电荷和电流能产生电磁辐射? 电磁辐射:即使在同一时刻源已消失,只要前一时刻源还存在,它们原先产生的空间场仍 然存在,这就表明源已将电磁能量释放到空间,而空间电磁能量可以脱离源单独存在,这种 现象称为电磁辐射. 只有时变电磁场才有这种辐射特性,而静态场完全被源所束缚. 6-9 如何计算时变电磁场的能量密度?能流密度矢量的定义是什么?如何根据电场及磁场计 算能流密度? 时变电磁场的能量密度: 能流密度矢量:其方向表示能量流动方向,大小表示单位时间内垂直穿过单位面积的能量. 能流密度矢量:S(r)=E(r)H(r) 6-10 什么是正弦电磁场?如何用复矢量表示正弦电磁场? 正弦电磁场:其场强的方向与时间无关,但其大小随时间的变化规律为正弦函数 具有这种变化规律的时变电磁场称正弦电磁场。 复矢量:正弦电磁场: 6-11 给出麦克斯韦方程及其位函数方程的复矢量形式. 麦克斯韦:以及: 位函数: 6-12 什么是复能流密度矢量?试述其实部及虚部的物理意义. A A A AB B B B = = = = + + + + t t t t A A A A E E E E = = = = + + + + t t t t A A A A E E E E A A A AB B B B = = = = J J J J t t t tt t t t A A A A A A A AA A A A + + + + = = = = 2 2 2 2 2 2 2 2 2 2 2 2 ) ) ) )( ( ( ( = = = = + + + + t t t t A A A A E E E E = = = = + + + + ) ) ) )( ( ( ( 2 2 2 2 A A A A t t t t t t t t A A A A = = = = t p =J J J J ),( ),( 2 1 ),( 22 tHtEtwr r r rr r r rr r r r += )( sin)(),( em r r r rr r r rE E E Er r r rE E E E +=tt ) ) ) )r r r r( ( ( (j j j j mmmmmmmm e e e e ) ) ) )( ( ( () ) ) )( ( ( ( e e e er r r rE E E Er r r rE E E E = = = = ) ) ) )( ( ( (ImImImIm) ) ) ), , , ,( ( ( ( j j j j mmmm t t t t e e e er r r rE E E Et t t tr r r rE E E E = = = = D D D DJ J J JH H H H j j j j + + + += = = = B B B BE E E E j j j j = = = = 0 0 0 0= = = = B B B B = = = = D D D D j j j j = = = = J J J J E E E ED D D D = = = = H H H HB B B B = = = = J J J JE E E EJ J J J + + + += = = = J J J JA A A AA A A A 2 2 2 22 2 2 2 = = = =+ + + + = = = =+ + + +
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 充电桩建设工程预算控制方案
- 混凝土施工现场环保管理方案
- 颜色类知识竞赛题及答案
- 塔吊基础专项建筑施工组织设计及对策
- 碳复合材材料生产线建设项目施工方案
- 混凝土工程现场安全管理方案
- 离婚协议子女轮流抚养及子女抚养费支付服务合同
- 离婚双方个人隐私保护及子女成长协议
- 离婚双方共同人寿保险合同终止及续保协议
- 离婚房产分割与共同债务清偿协议范本
- 2025十堰张湾区城市社区党组织书记专项招聘事业编制人员考试笔试试卷【附答案】
- 国歌课件教学课件
- 江苏省家政服务合同派遣制4篇
- 农业农村部在京事业单位招聘考试真题2024
- 农村电商公共服务体系的建设与完善-以资阳市雁江区为例
- 东营市专业技术人员继续教育公共服务平台-题库(答案)
- 2024八年级道德与法治上册知识点
- 航模课件教学课件
- 看守所巡控岗位课件
- 汽车装饰用品购销合同(标准版)
- 2025秋冀人版(2024)科学二年级上册教学计划、教学设计(附目录)
评论
0/150
提交评论