




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
MIT The Intel Pentium Division Flaw Alan Edelman Department of Mathematics Laboratory for Computer Science Massachusetts Institute of Technology MIT Not So Well Known The bug itself is (mathematically) neat! A Lesson (for me anyway) So much incomplete So much incomplete information is out rmation is out there. MIT Interesting Related Topics (but my topic is the bug) vRisk to Pentium owners vIntels chip replacement blunder vKahans SRT division tester vMoler, Coe, and Mathisen software workaround vOnly the lawyers get rich vThose ubiquitous Pentium jokes MIT Outline vNicelys Discovery vComputer Science Prerequisites vDivision (SRT=Sweeney,Robertson,Tocher) vPentium Lookup Table vDivision Example vSix Ones Result vInequality Analysis v“Send More Money” Puzzle vAlways nearly five good digits MIT Nicelys Twin Prime Bug Discovery vTwin primes: (5,7) (11,13) (17,19) (29,31) . vNicely was summing twin prime reciprocals: v S = 1/5 + 1/ 7 + 1/11 + 1/13 + 1/17 + 1/19 + . vS is finite. vNicely computed on many platforms. vNicely checked his work. MIT Computer Science Prerequisites vCarry Save Addition. vOnes vs. Twos Complement. MIT Carry-save Addition 1212 21 21 + 19+ 19 52 52 MIT Carry-save Addition 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1001110011 1010010100 + + 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1001110011 1010010100 0110001100 1010110101 1 1 0 0 Sum Bits (s) Carry Bits (c) + + + + 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1 1 0 0 s = xyz = x+y+z (mod 2) c = xy xz yz = (x+y+z | 2) 0110001100 1010110101 1001110011 1010010100 + + + + Sum Bits (s) Carry Bits (c) 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1001110011 1010010100 0110001100 1010110101 01 01 00 00 s = xyz = x+y+z (mod 2) c = xy xz yz = (x+y+z | 2) + + + + Sum Bits (s) Carry Bits (c) 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1001110011 1010010100 0110001100 1010110101 1100111001 0100001000 s = xyz = x+y+z (mod 2) c = xy xz yz = (x+y+z | 2) + + + + Sum Bits (s) Carry Bits (c) 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1001110011 1010010100 0110001100 1010110101 1100111001 0100001000 s = xyz = x+y+z (mod 2) c = xy xz yz = (x+y+z | 2) +10011+10011 + + + + Sum Bits (s) Carry Bits (c) 12 21 + 19 52 20 Answer (mod 32) MIT Carry-save Addition 0110001100 1010110101 1001110011 1010010100 0110001100 1010110101 1100111001 0100001000 s = xyz = x+y+z (mod 2) c = xy xz yz = (x+y+z | 2) +10011+10011 00010 00010 10010 10010 Sum Bits (s) Carry Bits (c) + + + + Sum Bits (s) Carry Bits (c) 12 21 + 19 52 20 Answer (mod 32) MIT Ones vs. Twos Complement Twos Complement 300011 200010 100001 000000 -111111 -211110 -311101 MIT Ones vs. Twos Complement Twos Complement Ones Complement 30001100011 20001000010 10000100001 00000000000 -11111111110 -21111011101 -31110111100 MIT Ones vs. Twos Complement Twos Complement Ones Complement 30001100011 20001000010 10000100001 00000000000 -11111111110 -21111011101 -31110111100 MIT vDivision Algorithms: MIT Long Division Example 1.42857 1.42857 7 71010.00000 .00000 7 7 3030 28 28 2020 14 14 6060 MIT Long Division Example q0 q1q2q3q4q5 1.42857 710.00000 7 30 28 20 14 60 Chosen to satisfy usual inequalities MIT p = 10, d = 7p = 10, d = 7 10d = 7010d = 70 p p k+1k+1 = 10(p = 10(p k k q q k k d d) ) 0 p0 pk+1 k+1 70 70 Long Division Example q0 q1q2q3q4q5 1.42857 710.00000 p0 7 30 p1 28 20 p2 14 60 p3 MIT Long Division Radix 10 Compute Compute q = p / dq = p / d. . p p0 0 := p := p for k=0,1,.for k=0,1,. Find the digit Find the digit q q k k 0, 1, 2, , 90, 1, 2, , 9 such thatsuch that p pk+1 k+1 := 10(p := 10(pk k - - q qk k d) d) satisfiessatisfies p pk k +1 +1 0, 10)d0, 10)d endend q = p / d = q q = p / d = q i i / 10 / 10 i i S S i=0 i=0 MIT SRT Division Radix 4 Such qk exists? Algorithm correct? Compute Compute q = p / dq = p / d. . p p0 0 := p := p for k=0,1,.for k=0,1,. Look up a digit Look up a digit q q k k -2,-1,0,1,2 -2,-1,0,1,2 such thatsuch that p pk+1 k+1 := 4(p := 4(pk k - - q qk k d) d) satisfiessatisfies|p|pk k +1 +1| (8/3)d | (8/3)d endend q = p / d = q q = p / d = q i i / 4 / 4 i i S S i=0 i=0 MIT Such q q k k exists? exists? Given Given 11p,d2. Compute q=p,d2. Compute q=p/dp/d. . p p0 0 := p := p for k=0,1,.for k=0,1,. Look up a digit Look up a digit q q k k -2,-1,0,1,2 -2,-1,0,1,2 such thatsuch that p pk+1 k+1 := 4(p := 4(pk k - - q qk k d) d) satisfies|psatisfies|pk k +1 +1| (8/3)d | (8/3)d endend q = q = p/dp/d = = q q i i / 4/ 4 i i S S i=0i=0 q qk k := 0:= 0 q qk k := 2 := 2 q qk k := +2 := +2 q qk k := +1:= +1 q qk k := 1 := 1 3 3 8 8 d d 8 8 3 3 d d 3 3 2 2 d d 2 2 3 3 d d MIT 4(p4(pk k - 0) - 0) Such q q k k exists? exists? Given Given 11p,d2. Compute q=p,d2. Compute q=p/dp/d. . p p0 0 := p := p for k=0,1,.for k=0,1,. Look up a digit Look up a digit q q k k -2,-1,0,1,2 -2,-1,0,1,2 such thatsuch that p pk+1 k+1 := 4(p := 4(pk k - - q qk k d) d) satisfies|psatisfies|pk k +1 +1| (8/3)d | (8/3)d endend q = q = p/dp/d = = q q i i / 4/ 4 i i S S i=0i=0 q qk k := 0 := 0 -2 / 3d pk 2 / 3d pk+1 := 4(pk - 0) 3 3 8 8 d d 8 8 3 3 d d 3 3 2 2 d d 2 2 3 3 d d MIT Such q q k k exists? exists? Given Given 11p,d2. Compute q=p,d2. Compute q=p/dp/d. . p p0 0 := p := p for k=0,1,.for k=0,1,. Look up a digit Look up a digit q q k k -2,-1,0,1,2 -2,-1,0,1,2 such thatsuch that p pk+1 k+1 := 4(p := 4(pk k - - q qk k d) d) satisfies|psatisfies|pk k +1 +1| (8/3)d | (8/3)d endend q = q = p/dp/d = = q q i i / 4/ 4 i i S S i=0i=0 4 / 3d pk 8 / 3d pk+1 := 4(pk - 2d) q qk k := +2 := +2 3 3 4 4 d d3 3 8 8 d d 8 8 3 3 d d MIT Such q q k k exists? exists? Given Given 11p,d2. Compute q=p,d2. Compute q=p/dp/d. . p0 := p for k=0,1,.,. Look up a digit Look up a digit q q k k -2,-1,0,1,2 -2,-1,0,1,2 such thatsuch that p pk+1 k+1 := 4(p := 4(pk k - - q qk k d) d) satisfies|psatisfies|pk k +1 +1| (8/3)d | (8/3)d endend q = q = p/dp/d = = q q i i / 4/ 4 i i S S i=0i=0 4/3 pk 8/3 pk+1 := 4(pk - 2d) q qk k := +2 := +2 p pk k - 2d- 2d 3 3 8 8 d d 8 8 3 3 d d 3 3 2 2 d d 2 2 3 3 d d MIT 4(p4(pk k - 2d) - 2d) Such q q k k exists? exists? Given Given 11p,d2. Compute q=p,d2. Compute q=p/dp/d. . p p0 0 := p := p for k=0,1,.for k=0,1,. Look up a digit Look up a digit q q k k -2,-1,0,1,2 -2,-1,0,1,2 such thatsuch that p pk+1 k+1 := 4(p := 4(pk k - - q qk k d) d) satisfies|psatisfies|pk k +1 +1| (8/3)d | (8/3)d endend q = q = p/dp/d = = q q i i / 4/ 4 i i S S i=0i=0 q qk k := +2 := +2 4 / 3d pk 8 / 3d pk+1 := 4(pk - 2d) p pk k - 2d- 2d 3 3 8 8 d d 8 8 3 3 d d 3 3 2 2 d d 2 2 3 3 d d MIT A q q k k For Every Point For Every Point q qk k := 0:= 0 q qk k := 2 := 2 q qk k := +2 := +2 q qk k := +1:= +1 q qk k := 1 := 1 3 3 8 8 d d 8 8 3 3 d d 3 3 2 2 d d 2 2 3 3 d d MIT Algorithm Correct? Claim:Claim: p qp q 1 1 q qk-1 k-1 p p k k d 4 4d 4 4k-1 k-1 d d Proof by Induction:Proof by Induction: p p k k+1 +1 = 4(p = 4(p k k - - q q k k d d) ) p p k k q q k k p p k+1k+1 d d 4 4 k k d d = q = q 0 0 + + . . . + + + + . . . + + 4 4-k -k 4 4-k -k = + 4 = + 4-(k+1) -(k+1) MIT Algorithm Correct? Claim:Claim: p qp q 1 1 q qk-1 k-1 q qk k p p k+1k+1 d 4 4d 4 4k-1 k-1 4 4k k d d Proof by Induction:Proof by Induction: p p k k+1 +1 = 4(p = 4(p k k - - q q k k d d) ) p p k k q q k k p p k+1k+1 d d 4 4 k k d d = q = q 0 0 + + . . . + + + + . . . + + + 4 + 4-(k+1) -(k+1) 4 4-k -k = + 4 = + 4-(k+1) -(k+1) MIT Algorithm Correct? Claim:Claim: p qp q 1 1 q qk-1 k-1 q qk k p p k+1k+1 d 4 4d 4 4k-1 k-1 4 4k k d d Proof by Induction:Proof by Induction: p p k k+1 +1 = 4(p = 4(p k k - - q q k k d d) ) p p k k q q k k p p k+1k+1 d d 4 4 k k d d Letting Letting k k proves proves p qp q 1 1 q q 2 2 d 4 4d 4 4 2 2 = q = q 0 0 + + . . . + + + 4 + + . . . + + + 4-(k+1) -(k+1) 4 4-k -k = + 4 = + 4-(k+1) -(k+1) = q = q 0 0 + + + . . . + + + . . . MIT Pentium Lookup Table (P-d plot) Divisor Shifted Partial Remainder 1.0000 1.0001 1.0010 1.0011 1.0100 1.0101 1.0110 1.0111 1.1000 1.1001 1.1010 1.1011 1.1100 1.1101 1.1110 1.1111 1/16 1/8 Blue Green q := 2 q := 1 q := 0 q := -1 q:= -2 MIT Pentium Lookup Table (P-d plot) Shifted Partial Remainder Divisor 1.0000 1.0001 1.0010 1.0011 1.0100 1.0101 1.0110 1.0111 1.1000 1.1001 1.1010 1.1011 1.1100 1.1101 1.1110 1.1111 Blue Green q := 2 q := 1 q := 0 q := -1 q:= -2 1/16 1/8 MIT A Close-up Look at One Column (D=1.0001) 2 2 1 1 0 0 -1-1 -2-2 2.8752.875 1.5 1.5 1.375 1.375 0.375 0.375 0.25 0.25 -0.5-0.5 -0.625-0.625 -1.625-1.625 -1.75-1.75 -3-3 P MIT 2 2 1 1 0 0 -1-1 -2-2 2.8752.875 1.5 1.5 1.375 1.375 0.375 0.375 0.25 0.25 -0.5-0.5 -0.625-0.625 -1.625-1.625 -1.75-1.75 -3-3 0 0 0 0 2 2 2 2 2 2 2 2 2 2 P 3.375 Off the Chart 3.25 Off the Chart 3.125 Off the Chart 3 Off the Chart 2.875 Buggy Entry 2.75 Foothold A Close-up Look at One Column (D=1.0001) MIT Pentium Division Example: 1.875/1.000 pk+1 := 4(pk qkd) 0001.111 00000000000 0001.111 00000000000 S S 0000.000 00000000000 0000.000 00000000000 C C 1.875 = 1.875 = q qk k :=0:=0 q qk k :=2:=2 q qk k :=+2:=+2 q qk k :=+1:=+1 q qk k :=1:=1 MIT pk+1 := 4(pk qkd) 0001.111 00000000000 0001.111 00000000000 S S 0000.000 00000000000 0000.000 00000000000 C C 1101.111 111111111111101.111 11111111111 1100.000 11111111111 1100.000 11111111111 S S 0011.110 00000000001 0011.110 00000000001 C C q qk k :=0:=0 q qk k :=2:=2 q qk k :=+2:=+2 q qk k :=+1:=+1 q qk k :=1:=1 2 2 1 =1 = -0.125 = -0.125 = 1.875 = 1.875 = Pentium Division Example: 1.875/1.000 MIT -0.125-0.125 4 = 4 = -0.5 = -0.5 = pk+1 := 4(pk qkd) 0001.111 00000000000 0001.111 00000000000 S S 0000.000 00000000000 0000.000 00000000000 C C 1101.111 111111111111101.111 11111111111 0000.011 1111111110000.011 11111111100 00 S S 1111.000 0000000011111.000 00000000100 00 C C q qk k :=0:=0 q qk k :=2:=2 q qk k :=+2:=+2 q qk k :=+1:=+1 q qk k :=1:=1 2 2 1 =1 = Pentium Division Example: 1.875/1.000 1.875 = 1.875 = MIT pk+1 := 4(pk qkd) 0001.111 00000000000 0001.111 00000000000 S S 0000.000 00000000000 0000.000 00000000000 C C 1101.111 111111111111101.111 11111111111 0000.011 11111111100 0000.011 11111111100 S S 1111.000 00000000100 1111.000 00000000100 C C 0001.000 000000000000001.000 00000000000 1001.111 11111100000 1001.111 11111100000 S S 1000.000 00000100000 1000.000 00000100000 C C q qk k :=0:=0 q qk k :=2:=2 q qk k :=+2:=+2 q qk k :=+1:=+1 q qk k :=1:=1 22 1 =1 = 1 1 1 =1 = 1.875 = 1.875 = Pentium Division Example: 1.875/1.000 MIT 2/1 + 1/4 + 2/16 + 0/64 = 1.875/1.000 0001.111 00000000000 0001.111 00000000000 S S 0000.000 00000000000 0000.000 00000000000 C C 1101.111 111111111111101.111 11111111111 0000.011 11111111100 0000.011 11111111100 S S 1111.000 00000000100 1111.000 00000000100 C C 0001.000 000000000000001.000 00000000000 1001.111 11111100000 1001.111 11111100000 S S 1000.000 00000100000 1000.000 00000100000 C C 1101.111 111111111111101.111 11111111111 0000.000 00011111100 0000.000 00011111100 S S 1111.111 11100000100 1111.111 11100000100 C C 0000.000 000000000000000.000 00000000000 1111.111 11111100000 1111.111 11111100000 S S 0000.000 00000100000 0000.000 00000100000 C C q qk k :=0:=0 q qk k :=2:=2 q qk k :=+2:=+2 q qk k :=+1:=+1 q qk k :=1:=1 22 1 =1 = 1 1 1 =1 = 22 1 =1 = 00 1 =1 = 1.875 = 1.875 = Pentium Division Example: 1.875/1.000 MIT Inequality AnalysisInequality Analysis Pk pk Pk + 1/4 D d D+ D + 1/16 Pk+1 = 4(Pk qkD+) + Rk R Rk k R R k k MaxMax 3/4 if 3/4 if q q k k = 2 = 2 3/4 if 3/4 if q q k k = 1 = 1 3/4 if 3/4 if q q k k = 0 = 0 1 if 1 if q q k k = 1 = 1 5/4 if 5/4 if q q k k = 2 = 2 MIT Reaching the Flaw is Not Easy! 2 2 qk Pk+1 2 Pbad - 1/8 1 Pbad - 1/8 0 Pbad - 1/8 1 Pbad - 1/8 Pk Pbad - 1/8 Pbad - 1/8 Pk = Pbad - 1/8 Pbad MIT foothold buggy entry MIT “Send More Money” Puzzle SEND +MORE MONEY 32 Massachusetts Institue of Technology 77 Massachusetts Ave. Cambridge, MA 02139 intel 22 Mission College Blvd. Santa Clara, CA 95052 MIT The Path to Failure Bad Divisors: d = 1.d1d2d3d4111111d11 . . . . . . 1 1 1 1 1 1 1 1 1 1 . . . . . . 1 1 1 1 1 1 1 1 1 1 .d.d 2 2d d3 3d d4 41 1 1 1 1 1 1 1 1 1 . . 1 1 1 1 1 1 1 1 1 1 . .1 1 1 1 1 1 1 1 1 1 1 1 .d.d 2 2d d3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 夏季亲子活动策划方案
- 建筑方案设计-技术创新
- 情感咨询账号搭建方案
- 小型建筑形体构建方案设计
- 延庆建筑景观拍摄方案设计
- 南开区全网营销报价方案
- 某县第十中学河北省人工智能创客教育实验校总结
- 市北混凝土道路施工方案
- 大学外出活动策划方案
- 工艺美术展览方案
- 2025江苏南京市麒麟科创园所属企业部分招聘8人备考试题及答案解析
- 人教版 2025-2026 学年度历史七年级上册第二单元第 8 课《夏商周时期的科技与文化》创新教学设计
- 烧烫伤应急预案
- 2025-2026学年沪教版(2024)小学英语四年级上册教学计划及进度表
- 农药使用技术原理
- 退伍留疆考试题库及答案
- 2024年湖南长沙血液中心招聘真题
- 铁路局连接员职业技能鉴定考试题库及答案
- 5.一个豆荚里的五粒豆 第1课时(学习任务单)语文统编版四年级上册
- 对外工程管理办法
- 护理疑难病例讨论的目的与实施策略
评论
0/150
提交评论