已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
在学生就要走出校门的时候,班级工作仍要坚持德育先行,继续重视对学生进行爱国主义教育、集体主义教育、行为规范等的教育,认真落实学校、学工处的各项工作要求2016-2017学年福建省漳州市九年级(下)期初数学试卷一、选择题(共10小题,每小题4分,满分40分)1方程x22x=0的根是()Ax1=x2=0Bx1=x2=2Cx1=0,x2=2Dx1=0,x2=22抛物线y=2x22x+1与坐标轴的交点个数是()A0B1C2D33抛物线y=x2+2x+3的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=24如图,DE是ABC的中位线,过点C作CFBD交DE的延长线于点F,则下列结论正确的是()AEF=CFBEF=DECCFBDDEFDE5一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()6如图,在RtABC中,斜边AB的长为m,A=35,则直角边BC的长是()Amsin35Bmcos35CD7在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180得到抛物线y=x2+5x+6,则原抛物线的解析式是()Ay=(x)2By=(x+)2Cy=(x)2 Dy=(x+)2+8动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A0.8B0.75C0.6D0.489二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c3b;(3)8a+7b+2c0;(4)若点A(3,y1)、点B(,y2)、点C(,y3)在该函数图象上,则y1y3y2;(5)若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x2其中正确的结论有()A2个B3个C4个D5个10如图,在ABC中,B=90,tanC=,AB=6cm动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动若P,Q两点分别从A,B两点同时出发,在运动过程中,PBQ的最大面积是()A18cm2B12cm2C9cm2D3cm2二、填空题(本大题有6小题,每小题4分,共24分)11不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是12已知A(0,3),B(2,3)是抛物线y=x2+bx+c上两点,该抛物线的顶点坐标是13如图,在ABC中,DEBC,且AD=2,DB=3,则=14若函数y=(a1)x24x+2a的图象与x轴有且只有一个交点,则a的值为15已知点P(m,n)在抛物线y=ax2xa上,当m1时,总有n1成立,则a的取值范围是16如图,一段抛物线:y=x(x2)(0x2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180得到C2,交x轴于A2;将C2绕A2旋转180得到C3,交x轴于A3;如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=三、解答题(共86分,8+8+10+12+10+10+14+14)17计算:|1|+cos30()2+(3.14)018先化简,再求值:(x+1),其中x=219如图,在ABC中,AB=AC,A=36,BD为角平分线,DEAB,垂足为E(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明20某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号 分组 频数 一6m72二7m87三8m9a四9m102(1)求a的值;(2)若用扇形图来描述,求分数在8m9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果)21如图,在四边形ABCD中,BCD是钝角,AB=AD,BD平分ABC,若CD=3,BD=,sinDBC=,求对角线AC的长22如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成)并测得当y=a时,该药物才具有疗效若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大度?23九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1x90,且x为整数)的售价与销售量的相关信息如下已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元) 时间x(天) 1 30 60 90 每天销售量p(件) 198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果24如图,已知点A(0,2),B(2,2),C(1,2),抛物线F:y=x22mx+m22与直线x=2交于点P(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为yP,求yP的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1x22,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围2016-2017学年福建省漳州市龙海二中九年级(下)期初数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1方程x22x=0的根是()Ax1=x2=0Bx1=x2=2Cx1=0,x2=2Dx1=0,x2=2【考点】解一元二次方程-因式分解法【分析】直接利用因式分解法将方程变形进而求出答案【解答】解:x22x=0x(x2)=0,解得:x1=0,x2=2故选:C2抛物线y=2x22x+1与坐标轴的交点个数是()A0B1C2D3【考点】抛物线与x轴的交点【分析】对于抛物线解析式,分别令x=0与y=0求出对应y与x的值,即可确定出抛物线与坐标轴的交点个数【解答】解:抛物线y=2x22x+1,令x=0,得到y=1,即抛物线与y轴交点为(0,1);令y=0,得到2x22x+1=0,即(x1)2=0,解得:x1=x2=,即抛物线与x轴交点为(,0),则抛物线与坐标轴的交点个数是2,故选C3抛物线y=x2+2x+3的对称轴是()A直线x=1B直线x=1C直线x=2D直线x=2【考点】二次函数的性质【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程【解答】解:y=x2+2x+3=(x+1)2+2,抛物线的对称轴为直线x=1故选B4如图,DE是ABC的中位线,过点C作CFBD交DE的延长线于点F,则下列结论正确的是()AEF=CFBEF=DECCFBDDEFDE【考点】三角形中位线定理;全等三角形的判定与性质【分析】首先根据三角形的中位线定理得出AE=EC,然后根据CFBD得出ADE=F,继而根据AAS证得ADECFE,最后根据全等三角形的性质即可推出EF=DE【解答】解:DE是ABC的中位线,E为AC中点,AE=EC,CFBD,ADE=F,在ADE和CFE中,ADECFE(AAS),DE=FE故选B5一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()【考点】二次函数的图象;一次函数的图象【分析】根据一次函数的性质和二次函数的性质,由函数图象可以判断a、b的正负情况,从而可以解答本题【解答】解:在A中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项A错误;在B中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项B错误;在C中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项C错误;在D中,由一次函数图象可知a0,b0,二次函数图象可知,a0,b0,故选项D正确;故选D6如图,在RtABC中,斜边AB的长为m,A=35,则直角边BC的长是()Amsin35Bmcos35CD【考点】锐角三角函数的定义【分析】根据正弦定义:把锐角A的对边a与斜边c的比叫做A的正弦可得答案【解答】解:sinA=,AB=m,A=35,BC=msin35,故选:A7在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180得到抛物线y=x2+5x+6,则原抛物线的解析式是()Ay=(x)2By=(x+)2Cy=(x)2Dy=(x+)2+【考点】二次函数图象与几何变换【分析】先求出绕原点旋转180的抛物线解析式,求出向下平移3个单位长度的解析式即可【解答】解:抛物线的解析式为:y=x2+5x+6,设原抛物线上有点(x,y),绕原点旋转180后,变为(x,y),点(x,y)在抛物线y=x2+5x+6上,将(x,y)代入y=x2+5x+6得y=x25x+6,所以原抛物线的方程为y=x2+5x6=(x)2+,向下平移3个单位长度的解析式为y=(x)2+3=(x)2故选A8动物学家通过大量的调查估计,某种动物活到20岁的概率为0.8,活到25岁的概率为0.6,则现年20岁的这种动物活到25岁的概率是()A0.8B0.75C0.6D0.48【考点】概率的意义【分析】先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可【解答】解:设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.6x,故现年20岁到这种动物活到25岁的概率为=0.75故选B9二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c3b;(3)8a+7b+2c0;(4)若点A(3,y1)、点B(,y2)、点C(,y3)在该函数图象上,则y1y3y2;(5)若方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x2其中正确的结论有()A2个B3个C4个D5个【考点】二次函数图象与系数的关系【分析】(1)正确根据对称轴公式计算即可(2)错误,利用x=3时,y0,即可判断(3)正确由图象可知抛物线经过(1,0)和(5,0),列出方程组求出a、b即可判断(4)错误利用函数图象即可判断(5)正确利用二次函数与二次不等式关系即可解决问题【解答】解:(1)正确=2,4a+b=0故正确(2)错误x=3时,y0,9a3b+c0,9a+c3b,故(2)错误(3)正确由图象可知抛物线经过(1,0)和(5,0),解得,8a+7b+2c=8a28a10a=30a,a0,8a+7b+2c0,故(3)正确(4)错误,点A(3,y1)、点B(,y2)、点C(,y3),2=,2()=,点C离对称轴的距离近,y3y2,a0,32,y1y2y1y2y3,故(4)错误(5)正确a0,(x+1)(x5)=3/a0,即(x+1)(x5)0,故x1或x5,故(5)正确正确的有三个,故选B10如图,在ABC中,B=90,tanC=,AB=6cm动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动若P,Q两点分别从A,B两点同时出发,在运动过程中,PBQ的最大面积是()A18cm2B12cm2C9cm2D3cm2【考点】解直角三角形;二次函数的最值【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可【解答】解:tanC=,AB=6cm,=,BC=8,由题意得:AP=t,BP=6t,BQ=2t,设PBQ的面积为S,则S=BPBQ=2t(6t),S=t2+6t=(t26t+99)=(t3)2+9,P:0t6,Q:0t4,当t=3时,S有最大值为9,即当t=3时,PBQ的最大面积为9cm2;故选C二、填空题(本大题有6小题,每小题4分,共24分)11不透明的袋子里装有2个白球,1个红球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸出白球的概率是【考点】概率公式【分析】先求出球的总数,再根据概率公式求解即可【解答】解:不透明的袋子里装有2个白球,1个红球,球的总数=2+1=3,从袋子中随机摸出1个球,则摸出白球的概率=故答案为:12已知A(0,3),B(2,3)是抛物线y=x2+bx+c上两点,该抛物线的顶点坐标是(1,4)【考点】二次函数的性质;二次函数图象上点的坐标特征【分析】把A、B的坐标代入函数解析式,即可得出方程组,求出方程组的解,即可得出解析式,化成顶点式即可【解答】解:A(0,3),B(2,3)是抛物线y=x2+bx+c上两点,代入得:,解得:b=2,c=3,y=x2+2x+3=(x1)2+4,顶点坐标为(1,4),故答案为:(1,4)13如图,在ABC中,DEBC,且AD=2,DB=3,则=【考点】相似三角形的判定与性质【分析】由平行线证出ADEABC,得出对应边成比例,即可得出结果【解答】解:DEBC,ADEABC,AD=2,DB=3,AB=AD+DB=5,=;故答案为:14若函数y=(a1)x24x+2a的图象与x轴有且只有一个交点,则a的值为1或2或1【考点】抛物线与x轴的交点【分析】直接利用抛物线与x轴相交,b24ac=0,进而解方程得出答案【解答】解:函数y=(a1)x24x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b24ac=164(a1)2a=0,解得:a1=1,a2=2,当函数为一次函数时,a1=0,解得:a=1故答案为:1或2或115已知点P(m,n)在抛物线y=ax2xa上,当m1时,总有n1成立,则a的取值范围是a0【考点】二次函数图象上点的坐标特征【分析】依照题意画出图形,结合函数图形以及已知条件可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围【解答】解:根据已知条件,画出函数图象,如图所示由已知得:,解得:a0故答案为:a016如图,一段抛物线:y=x(x2)(0x2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180得到C2,交x轴于A2;将C2绕A2旋转180得到C3,交x轴于A3;如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=1【考点】二次函数图象与几何变换;抛物线与x轴的交点【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果【解答】解:y=x(x2)(0x2),配方可得y=(x1)2+1(0x2),顶点坐标为(1,1),A1坐标为(2,0)C2由C1旋转得到,OA1=A1A2,即C2顶点坐标为(3,1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,1),A6(12,0);m=1故答案为:1三、解答题(共86分,8+8+10+12+10+10+14+14)17计算:|1|+cos30()2+(3.14)0【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】本题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果【解答】解:原式=1+24+1=1+34+1=118先化简,再求值:(x+1),其中x=2【考点】分式的化简求值【分析】首先将括号里面的通分相减,然后将除法转化为乘法,化简后代入x的值即可求解【解答】解:原式=,当x=2时,原式=219如图,在ABC中,AB=AC,A=36,BD为角平分线,DEAB,垂足为E(1)写出图中一对全等三角形和一对相似比不为1的相似三角形;(2)选择(1)中一对加以证明【考点】相似三角形的判定;全等三角形的判定【分析】(1)利用相似三角形的判定以及全等三角形的判定方法得出符合题意的答案;(2)利用相似三角形的判定以及全等三角形的判定方法分别得出即可【解答】解:(1)ADEBDE,ABCBCD;(2)证明:AB=AC,A=36,ABC=C=72,BD为角平分线,ABD=ABC=36=A,在ADE和BDE中,ADEBDE(AAS);证明:AB=AC,A=36,ABC=C=72,BD为角平分线,DBC=ABC=36=A,C=C,ABCBCD20某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号 分组 频数 一6m72二7m87三8m9a四9m102(1)求a的值;(2)若用扇形图来描述,求分数在8m9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果)【考点】列表法与树状图法;频数(率)分布表;扇形统计图【分析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8m9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率【解答】解:(1)由题意可得,a=20272=9,即a的值是9;(2)由题意可得,分数在8m9内所对应的扇形图的圆心角为:360=162;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是: =,即第一组至少有1名选手被选中的概率是21如图,在四边形ABCD中,BCD是钝角,AB=AD,BD平分ABC,若CD=3,BD=,sinDBC=,求对角线AC的长【考点】解直角三角形【分析】过D作DEBC交BC的延长线于E,得到E=90,根据三角形函数的定义得到DE=2,推出四边形ABCD是菱形,根据菱形的性质得到ACBD,AO=CO,BO=DO=,根据勾股定理得到结论【解答】解:过D作DEBC交BC的延长线于E,则E=90,sinDBC=,BD=,DE=2,CD=3,CE=1,BE=4,BC=3,BC=CD,CBD=CDB,BD平分ABC,ABD=DBC,ABD=CDB,ABCD,同理ADBC,四边形ABCD是菱形,连接AC交BD于O,则ACBD,AO=CO,BO=DO=,OC=,AC=222如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成)并测得当y=a时,该药物才具有疗效若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大度?【考点】反比例函数的应用【分析】利用待定系数法分别求出直线OA与双曲线的函数解析式,再令它们相等得出方程,解方程即可求解【解答】解:设直线OA的解析式为y=kx,把(4,a)代入,得a=4k,解得k=,即直线OA的解析式为y=x根据题意,(9,a)在反比例函数的图象上,则反比例函数的解析式为y=当x=时,解得x=6(负值舍去),故成人用药后,血液中药物则至少需要6小时达到最大浓度23九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1x90,且x为整数)的售价与销售量的相关信息如下已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元) 时间x(天) 1 30 60 90 每天销售量p(件) 198 140 80 20(1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果【考点】二次函数的应用;一元一次不等式的应用【分析】(1)当1x50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50x90时,y=90再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题当1x50时,结合二次函数的性质即可求出在此范围内w的最大值;当50x90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;(3)令w5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论【解答】解:(1)当1x50时,设商品的售价y与时间x的函数关系式为y=kx+b(k、b为常数且k0),y=kx+b经过点(0,40)、(50,90),解得:,售价y与时间x的函数关系式为y=x+40;当50x90时,y=90售价y与时间x的函数关系式为y=由数据可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n(m、n为常数,且m0),p=mx+n过点(60,80)、(30,140),解得:,p=2x+200(0x90,且x为整数),当1x50时,w=(y30)p=(x+4030)(2x+200)=2x2+180x+2000;当50x90时,w=(9030)(2x+200)=120x+12000综上所示,每天的销售利润w与时间x的函数关系式是w=(2)当1x50时,w=2x2+180x+2000=2(x4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 真空电子器件金属零件制造工岗前创新思维考核试卷含答案
- 肿瘤疫苗佐剂结核病适配-洞察与解读
- 液体活检标记物开发-洞察与解读
- 湖南省邵东一中振华实验学校2025-2026学年高一上数学期末考试试题含解析
- 南充职业技术学院《建筑速写》2024-2025学年第一学期期末试卷
- 郴州职业技术学院《新能源汽车运用技术》2024-2025学年第一学期期末试卷
- 青海省平安县第一高级中学2026届高一上物理期末学业质量监测模拟试题含解析
- 云南省红河州绿春一中2025年化学高一第一学期期中经典试题含解析
- 混合生物识别识别率-洞察与解读
- Unit6基础知识梳理练习-外研版英语(2025)八年级上册
- 带锯安全技术操作规程
- 汽车制造与试验技术
- 2023年4月自考00908网络营销与策划试题及答案含评分标准
- 《医疗安全不良事件报告制度》及流程
- YY/T 0506.1-2023医用手术单、手术衣和洁净服第1部分:通用要求
- GB/T 36709-2018减振复合钢板
- GA/T 416-2003道路交通防撞墩
- 木制品招标文件
- 小学心理健康《不做小拖拉》
- 工艺管道3PE技术交底
- 国际贸易第七版ppt课件(完整版)
评论
0/150
提交评论