




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散33.2极大值与极小值学习目标1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件知识点一函数极值的概念函数yf(x)的图象如图所示思考1函数在xa处的函数值与附近的函数值有什么大小关系?思考2f(a)为多少?在xa附近,函数的导数的符号有什么规律?思考3函数在xb处的情况呢?梳理(1)极小值点与极小值函数yf(x)在xa处的函数值f(a)比它在xa附近其他点的函数值都小,f(a)0;而且在xa的左侧f(x)0.则把点a叫做函数yf(x)的极小值点,f(a)叫做函数yf(x)的极小值(2)极大值点与极大值函数yf(x)在xb处的函数值f(b)比它在xb附近其他点的函数值都大,f(b)0;而且在xb的左侧f(x)0,右侧f(x)0.则把点b叫做函数yf(x)的极大值点,f(b)叫做函数yf(x)的极大值_、_统称为极值点,_和_统称为极值知识点二求函数yf(x)极值的方法解方程f(x)0,当f(x0)0时,(1)如果在x0的左侧f(x)_0,右侧f(x)_0,那么f(x0)是极大值(2)如果在x0的左侧f(x)_0,右侧f(x)_0,那么f(x0)是极小值类型一求函数的极值和极值点例1求下列函数的极值:(1)f(x)2x33x212x1;(2)f(x)3ln x.反思与感悟求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f(x);(2)求f(x)的拐点,即求方程f(x)0的根;(3)利用f(x)与f(x)随x的变化情况表,根据极值点左右两侧单调性的变化情况求极值特别提醒:在判断f(x)的符号时,借助图象也可判断f(x)各因式的符号,还可用特殊值法判断跟踪训练1已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值类型二已知函数极值求参数例2(1)已知函数f(x)x33ax2bxa2在x1处有极值0,则a_,b_.(2)若函数f(x)x3x2ax1有极值点,则a的取值范围为_引申探究1若本例(2)中函数的极大值点是1,求a的值2若例(2)中函数f(x)有两个极值点,均为正值,求a的取值范围反思与感悟已知函数极值的情况,逆向应用确定函数的解析式时,应注意以下两点:(1)根据极值点处导数为0和极值两个条件列方程组,利用待定系数法求解(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性跟踪训练2设x1与x2是函数f(x)aln xbx2x的两个极值点(1)试确定常数a和b的值;(2)判断x1,x2是函数f(x)的极大值点还是极小值点,并说明理由类型三函数极值的综合应用例3设函数f(x)x36x5,xR.(1)求函数f(x)的单调区间和极值;(2)若关于x的方程f(x)a有三个不同的实根,求实数a的取值范围反思与感悟用求导的方法确定方程根的个数,是一种很有效的方法它通过函数的变化情况,运用数形结合思想来确定函数图象与x轴的交点个数,从而判断方程根的个数跟踪训练3已知函数f(x)x36x29x3,若函数yf(x)的图象与yf(x)5xm的图象有三个不同的交点,求实数m的取值范围1已知函数f(x)的定义域为R,导函数f(x)的图象如图所示,则函数f(x)有_个极大值点,_个极小值点2函数f(x)x3ex的极值点x0_.3已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围为_4设函数f(x)6x33(a2)x22ax.若f(x)的两个极值点为x1,x2,且x1x21,则实数a的值为_5已知关于x的函数f(x)x3bx2cxbc,若函数f(x)在x1处取得极值,则b_,c_.1在极值的定义中,取得极值的点称为极值点,极值点指的是自变量的值,极值指的是函数值2函数的极值是函数的局部性质可导函数f(x)在点xx0处取得极值的充要条件是f(x0)0且在xx0两侧f(x)符号相反3利用函数的极值可以确定参数的值,解决一些方程的解和图象的交点问题提醒:完成作业第3章3.33.3.2答案精析问题导学知识点一思考1函数在xa处的函数值比它在xa附近的其他点的函数值都小思考2f(a)0,在xa的左侧f(x)0.思考3函数在xb处的函数值f(b)比它在xb附近其他点的函数值都大,f(b)0,且在xb的左侧f(x)0,右侧f(x)(2)题型探究例1解(1)函数f(x)2x33x212x1的定义域为R,f(x)6x26x126(x2)(x1),解方程6(x2)(x1)0,得x12,x21.当x变化时,f(x)与f(x)的变化情况如下表:x(,2)2(2,1)1(1,)f(x)00f(x)极大值21极小值6所以当x2时,f(x)取极大值21;当x1时,f(x)取极小值6.(2)函数f(x)3ln x的定义域为(0,),f(x),令f(x)0,得x1.当x变化时,f(x),f(x)的变化情况如下表:x(0,1)1(1,)f(x)0f(x)极小值3因此当x1时,f(x)有极小值3,无极大值跟踪训练1解(1)f(x)ex(axb)aex2x4ex(axab)2x4,f(0)ab44,又f(0)b4,由可得ab4.(2)f(x)ex(4x4)x24x,f(x)ex(4x8)2x44ex(x2)2(x2)(x2)(4ex2)解f(x)0,得x12,x2ln 2,当x变化时,f(x)与f(x)的变化情况如下表:x(,2)2(2,ln 2)ln 2(ln 2,)f(x)00f(x)极大值极小值f(x)在(,2),(ln 2,)上单调递增,在(2,ln 2)上单调递减当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2)例2(1)29(2)(,1)引申探究1解f(x)x22xa,由题意得f(1)12a0,解得a3,则f(x)x22x3,经验证可知,f(x)在x1处取得极大值2解由题意得方程x22xa0有两不等正根,设为x1,x2,则解得0a0),故f(x)x1.当x(0,1)时,f(x)0;当x(2,)时,f(x)或x时,f(x)0;当x时,f(x)0.所以,f(x)的单调递增区间为(,)和(,);单调递减区间为(,)当x时,f(x)有极大值54;当x时,f(x)有极小值54.(2)由(1)的分析知,yf(x)的图象的大致形状及走向如图所示所以,当54a54时,直线ya与yf(x)的图象有三个不同的交点,即方程f(x)a有三个不同的实根跟踪训练3解由f(x)x36x29x3,可得f(x)3x212x9,f(x)5xm(3x212x9)5xmx2x3m,由题意可得x36x29x3x2x3m有三个不相等的实根,即g(x)x37x28xm的图象与x轴有三个不同的交点g(x)3x214x8(3x2)(x4),令g(x)0,得x或x4.当x变化时,g(x),g(x)的变化情况如下表:x(,)(,4)4(4,)g(x)00g(x)m16m则函数g(x)的极大值为g(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何提高初高中学生的社会实践能力
- 16 修理玩具说课稿-2023-2024学年小学科学一年级上册(2024)青岛版(五四制2024)
- 政史地综合教研活动总结报告
- 中考语文经典名著《西游记》试卷集
- 个人职业发展经历自述范文
- 大厂技工考试题及答案详解
- 4 趣味文字(教案)鲁教版(五四制)美术五年级上册
- 第六单元 23 出师表2023-2024学年九年级下册语文同步说课稿(统编版)
- 商业项目可行性分析报告
- 小企业财务管理实务手册
- 云南省小学劳动与技术教育实验课本教案教学计划
- 生猪养殖场实施方案
- 企业诉讼案件管理办法
- 成都数字化档案管理办法
- 掘进安全培训课件
- 《中国儿童幽门螺杆菌感染诊治专家共识(2022)》解读
- 第2课《中国人首次进入自己的空间站》练习题2025-2026学年统编版语文八年级上册
- 山西单招考试题库及答案
- 2025年成人高考语文试题及答案
- DB11-T 2103.14-2025 社会单位和重点场所消防安全管理规范 第14部分:电动汽车充电站
- n4考试题真题及答案
评论
0/150
提交评论