九年级数学上学期第一次月考试卷(含解析) 新人教版_13_第1页
九年级数学上学期第一次月考试卷(含解析) 新人教版_13_第2页
九年级数学上学期第一次月考试卷(含解析) 新人教版_13_第3页
九年级数学上学期第一次月考试卷(含解析) 新人教版_13_第4页
九年级数学上学期第一次月考试卷(含解析) 新人教版_13_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

系统掌握蕴含其中的马克思主义立场观点方法,要在系统学习、深刻领会、科学把握习近平教育思想上下功夫。精心组织开展学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神知识问答活动。2016-2017学年浙江省宁波市余姚市子陵中学九年级(上)第一次月考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1使二次根式有意义的x的取值范围是()Ax1Bx1Cx1Dx12二次函数y=2(x1)2+3的图象的顶点坐标是()A(1,3)B(1,3)C(1,3)D(1,3)3一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同从中任意摸出一个球,则是红球的概率为()ABCD4已知一元二次方程x28x+15=0的两个解恰好分别是等腰ABC的底边长和腰长,则ABC的周长为()A13B11或13C11D125把抛物线y=x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()Ay=(x1)23By=(x+1)23Cy=(x1)2+3Dy=(x+1)2+36一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为()A16cm或6cmB3cm或8cmC3cmD8cm7如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则ABC的面积为()A3B4C5D68当2x2时,下列函数:y=2x;y=x2+6x+8,函数值y随自变量x增大而增大的有()ABCD9某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A10%B15%C20%D25%10如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,则折痕DG的长为()ABCD11如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A16B17C18D1912二次函数y=ax2+bx+c(a0)的图象如图所示,若|ax2+bx+c|=k(k0)有两个不相等的实数根,则k 的取值范围是()Ak3Bk3Ck3Dk3二、填空题(本大题共有6小题,每题4分,共24分)13抛物线y=x22x3的顶点坐标是14从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为15若A为的图象在第二象限的一点,ABx轴于点B,且SAOB=3,则k为16将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,1),那么移动后的抛物线的关系式为17如图,直线y=x+4与x轴、y轴分别交于A、B两点,把AOB绕点A顺时针旋转90后得到AOB,则点B的坐标是18将抛物线向右平移2个单位,得到抛物线y2的图象P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B若ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=三、解答题(本大题共有8小题,共78分)19如图,已知ABC(1)用直尺和圆规作出O,使O经过A,C两点,且圆心O在AB边上(不写作法,保留作图痕迹)(2)若CAB=22.5,B=45且O的半径为1,试求出AB的长20已知二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函数y=x+m的图象交于(0,1)(1)求两个函数解析式;(2)求两个函数图象的另一个交点21如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y)记s=x+y(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s6时甲获胜,否则乙获胜你认为这个游戏公平吗?对谁有利?22在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x(m)(1)若花园的面积为187m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是16m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值23如图,AB是半圆O的直径,D是半圆上的一点,DOB=75,DC交BA的延长线于E,交半圆于C,且CE=AO,求E的度数24九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x+4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果25ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE(1)如图(a)所示,当点D在线段BC上时求证:AEBADC;探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由26如图1,已知抛物线y=x2+bx+c经过点A(1,0)和点C(0,3),该抛物线与x轴的另一个交点为B,顶点是D(1)求此抛物线的解析式和顶点D的坐标;(2)求ACD的面积;(3)如图2,在直线y=2x上有一动点E,过E作直线EFy轴,交该抛物线于点F,以E、F、C、O为顶点的四边形是平行四边形,求E点的坐标2016-2017学年浙江省宁波市余姚市子陵中学九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1使二次根式有意义的x的取值范围是()Ax1Bx1Cx1Dx1【考点】二次根式有意义的条件【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可【解答】解:由题意得,x10,解得x1,故选:D2二次函数y=2(x1)2+3的图象的顶点坐标是()A(1,3)B(1,3)C(1,3)D(1,3)【考点】二次函数的性质【分析】根据二次函数的顶点式的特点,可直接写出顶点坐标【解答】解:二次函数y=2(x1)2+3为顶点式,其顶点坐标为(1,3)故选A3一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同从中任意摸出一个球,则是红球的概率为()ABCD【考点】概率公式【分析】让红球的个数除以球的总数即为摸到红球的概率【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是36=故选:C4已知一元二次方程x28x+15=0的两个解恰好分别是等腰ABC的底边长和腰长,则ABC的周长为()A13B11或13C11D12【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质【分析】由一元二次方程x28x+15=0的两个解恰好分别是等腰ABC的底边长和腰长,利用因式分解法求解即可求得等腰ABC的底边长和腰长,然后分别从当底边长和腰长分别为3和5时与当底边长和腰长分别为5和3时去分析,即可求得答案【解答】解:x28x+15=0,(x3)(x5)=0,x3=0或x5=0,即x1=3,x2=5,一元二次方程x28x+15=0的两个解恰好分别是等腰ABC的底边长和腰长,当底边长和腰长分别为3和5时,3+35,ABC的周长为:3+3+5=11;当底边长和腰长分别为5和3时,3+55,ABC的周长为:3+5+5=13;ABC的周长为:11或13故选B5把抛物线y=x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()Ay=(x1)23By=(x+1)23Cy=(x1)2+3Dy=(x+1)2+3【考点】二次函数图象与几何变换【分析】利用二次函数平移的性质【解答】解:当y=x2向左平移1个单位时,顶点由原来的(0,0)变为(1,0),当向上平移3个单位时,顶点变为(1,3),则平移后抛物线的解析式为y=(x+1)2+3故选:D6一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为()A16cm或6cmB3cm或8cmC3cmD8cm【考点】点与圆的位置关系【分析】点P应分为位于圆的内部位于外部两种情况讨论当点P在圆内时,点到圆的最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【解答】解:当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选:B7如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则ABC的面积为()A3B4C5D6【考点】反比例函数综合题【分析】先设P(0,b),由直线ABx轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可【解答】解:设P(0,b),直线ABx轴,A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,当y=b,x=,即A点坐标为(,b),又点B在反比例函数y=的图象上,当y=b,x=,即B点坐标为(,b),AB=()=,SABC=ABOP=b=3故选:A8当2x2时,下列函数:y=2x;y=x2+6x+8,函数值y随自变量x增大而增大的有()ABCD【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质【分析】根据一次函数,反比例函数,二次函数的增减性,逐一判断【解答】解:y=2x中k0,故y随自变量x增大而增大,满足题意;k0,故y随自变量x增大而增大,满足题意;中在每一个象限y随自变量x增大而增大,不满足题意;y=x2+6x+8,对称轴为x=3,当x3时,y随自变量x增大而增大,故满足题意,故选C9某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A10%B15%C20%D25%【考点】一元二次方程的应用【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数(1+增长百分率)2=后来数”得出方程,解出即可【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(1+x)2=1.44,x1=0.2=20%,x2=2.2(舍去),答:平均每月的增长率为20%故选C10如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边与对角线BD重合,则折痕DG的长为()ABCD【考点】翻折变换(折叠问题)【分析】首先设AG=x,由矩形纸片ABCD中,AB=4,AD=3,可求得BD的长,又由折叠的性质,可求得AB的长,然后由勾股定理可得方程:x2+22=(4x)2,解此方程即可求得AG的长,继而求得答案【解答】解:设AG=x,四边形ABCD是矩形,A=90,AB=4,AD=3,BD=5,由折叠的性质可得:AD=AD=3,AG=AG=x,DAG=A=90,BAG=90,BG=ABAG=4x,AB=BDAD=53=2,在RtABG中,AG2+AB2=BG2,x2+22=(4x)2,解得:x=,AG=,在RtADG中,DG=故选C11如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A16B17C18D19【考点】勾股定理【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答【解答】解:如图,设正方形S1的边长为x,ABC和CDE都为等腰直角三角形,AB=BC,DE=DC,ABC=D=90,sinCAB=sin45=,即AC=BC,同理可得:BC=CE=CD,AC=BC=2CD,又AD=AC+CD=6,CD=2,EC2=22+22,即EC=2;S1的面积为EC2=22=8;MAO=MOA=45,AM=MO,MO=MN,AM=MN,M为AN的中点,S2的边长为3,S2的面积为33=9,S1+S2=8+9=17故选B12二次函数y=ax2+bx+c(a0)的图象如图所示,若|ax2+bx+c|=k(k0)有两个不相等的实数根,则k 的取值范围是()Ak3Bk3Ck3Dk3【考点】抛物线与x轴的交点【分析】先得到y=|ax2+bx+c|(a0)的图象,根据图象可知0k3时,|ax2+bx+c|=k(k0)有4个不相等的实数根,k=3时,|ax2+bx+c|=k(k0)有3个不相等的实数根,k3时,|ax2+bx+c|=k(k0)有2个不相等的实数根,从而求解【解答】解:如图,由图象可知:0k3时,|ax2+bx+c|=k(k0)有4个不相等的实数根,k=3时,|ax2+bx+c|=k(k0)有3个不相等的实数根,k3时,|ax2+bx+c|=k(k0)有2个不相等的实数根,二次函数y=ax2+bx+c的顶点纵坐标为3故若|ax2+bx+c|=k(k0)有两个不相等的实数根,k的取值范围是k3故选:D二、填空题(本大题共有6小题,每题4分,共24分)13抛物线y=x22x3的顶点坐标是(1,4)【考点】二次函数的性质【分析】先把原式化为顶点式的形式,再求出其顶点坐标即可【解答】解:原抛物线可化为:y=(x1)24,其顶点坐标为(1,4)故答案为:(1,4)14从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为【考点】列表法与树状图法;三角形三边关系【分析】利用列举法得到所有四种结果,然后根据三角形三边的关系得到能组成三角形有种,然后根据概率公式求解【解答】解:从长度分别为3,5,6,9的四条线段中任取三条,共有(3 5 6)、(3 5 9)、(3 6 9)、(5 6 9)四中可能,其中能组成三角形有(3 5 6)、(5 6 9),所以能组成三角形的概率=故答案为15若A为的图象在第二象限的一点,ABx轴于点B,且SAOB=3,则k为6【考点】反比例函数系数k的几何意义【分析】由反比例函数所在的象限判定k0;根据反比例函数系数的几何意义得到SAOB=|k|=3,由此求得k的值【解答】解:如图,A为的图象在第二象限的一点,k0又SAOB=3,|k|=3,解得k=6(舍去)或k=6故答案是:616将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,1),那么移动后的抛物线的关系式为y=4(x2)2+3【考点】二次函数图象与几何变换【分析】易得新抛物线的顶点,根据顶点式及所给的坐标可得新抛物线的解析式【解答】解:原抛物线的顶点为(0,0),向右平移2个单位,再向上平移3个单位,那么新抛物线的顶点为(2,3);可设新抛物线的解析式为y=a(xh)2+k,把(3,1)代入得a=4,y=4(x2)2+317如图,直线y=x+4与x轴、y轴分别交于A、B两点,把AOB绕点A顺时针旋转90后得到AOB,则点B的坐标是(7,3)【考点】坐标与图形变化-旋转;一次函数的性质【分析】根据旋转的性质旋转不改变图形的形状和大小解答【解答】解:直线y=x+4与x轴、y轴分别交于A(3,0)、B(0,4)两点,由图易知点B的纵坐标为OA=OA=3,横坐标为OA+OB=OA+OB=7则点B的坐标是(7,3)故答案为:(7,3)18将抛物线向右平移2个单位,得到抛物线y2的图象P是抛物线y2对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B若ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=3+或3或2+或2【考点】二次函数图象与几何变换【分析】根据向右平移,横坐标减表示出抛物线y2的函数解析式,然后表示出点A、B的坐标,再表示出AB的长度与AP的长度,然后根据等腰直角三角形的两直角边相等列出方程求解即可【解答】解:抛物线y1=x2向右平移2个单位,抛物线y2的函数解析式为y=(x2)2=x24x+4,抛物线y2的对称轴为直线x=2,直线x=t与直线y=x、抛物线y2交于点A、B,点A的坐标为(t,t),点B的坐标为(t,t24t+4),AB=|t24t+4t|=|t25t+4|,AP=|t2|,APB是以点A或B为直角顶点的三角形,|t25t+4|=|t2|,t25t+4=t2或t25t+4=(t2),整理得,t26t+6=0,解得t1=3+,t2=3,整理得,t24t+2=0,解得t1=2+,t2=2,综上所述,满足条件的t值为:3+或3或2+或2,故答案为:3+或3或2+或2三、解答题(本大题共有8小题,共78分)19如图,已知ABC(1)用直尺和圆规作出O,使O经过A,C两点,且圆心O在AB边上(不写作法,保留作图痕迹)(2)若CAB=22.5,B=45且O的半径为1,试求出AB的长【考点】作图复杂作图【分析】(1)利用圆上点的性质作出线段AC的垂直平分线,进而得出答案;(2)利用线段垂直平分线的性质结合勾股定理得出BO的长,即可得出答案【解答】解:(1)如图所示:点O即为所求;(2)由题意可得:MN是AC的垂直平分线,则AO=CO,CAB=22.5,ACO=22.5,COB=45,OCB=90,CO=BC,O的半径为1,AO=CO=BC=1,BO=,AB=1+20已知二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),与一次函数y=x+m的图象交于(0,1)(1)求两个函数解析式;(2)求两个函数图象的另一个交点【考点】二次函数的性质【分析】(1)先将交点坐标(0,1),(1,2)代入二次函数的解析式中,再联立抛物线的对称轴方程即可求出二次函数的解析式;将交点坐标(0,1)代入一次函数的解析式中,即可求得m的值,也就求出了一次函数的解析式;(2)两个函数联立方程求得另一个交点坐标即可【解答】解:(1)二次函数y=ax2+bx+c的图象的对称轴是直线x=2,且图象过点(1,2),(0,1),解得:y=x2+4x1,一次函数y=x+m的图象交于(0,1)m=1,y=x1(2)由题意得,x2+4x1=x1解得:x=0,或x=3,两个函数图象的另一个交点(3,2)21如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y)记s=x+y(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s6时甲获胜,否则乙获胜你认为这个游戏公平吗?对谁有利?【考点】游戏公平性;列表法与树状图法【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可【解答】解:(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;解法一:画树状图法解法二:列表法 1 2 3 4 2 (1,2) (2,2) (3,2) (4,2) 4 (1,4) (2,4) (3,4) (4,4) 6 (1,6) (2,6) (3,6) (4,6)(2)这个游戏不公平如图,A和B 123 4 2 3 4 5 6 4 56 7 8 6 7 8 9 10其中S6的可能性为,意味着甲获胜的可能性为,同样乙获胜的可能性为,对乙有利22在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=x(m)(1)若花园的面积为187m2,求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是16m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值【考点】二次函数的应用;一元二次方程的应用【分析】(1)根据题意得出长宽=187,进而得出答案;(2)由题意可得出:S=x(28x)=x2+28x=(x14)2+196,再利用二次函数增减性求得最值【解答】解:(1)AB=xm,则BC=(28x)m,x(28x)=187,解得:x1=11,x2=17,答:x的值为11m或17m;(2)AB=xm,BC=28x,S=x(28x)=x2+28x=(x14)2+196,在P处有一棵树与墙CD,AD的距离分别是16m和6m,28x16,x66x12,当x=12时,S取到最大值为:S=(1214)2+196=192,答:花园面积S的最大值为192平方米23如图,AB是半圆O的直径,D是半圆上的一点,DOB=75,DC交BA的延长线于E,交半圆于C,且CE=AO,求E的度数【考点】圆的认识;等腰三角形的性质【分析】连结OC,如图,由CE=AO,OA=OC得到OC=EC,则根据等腰三角形的性质得E=1,再利用三角形外角性质得2=E+1=2E,加上D=2=2E,所以BOD=E+D,即E+2E=75,然后解方程即可【解答】解:连结OC,如图,CE=AO,而OA=OC,OC=EC,E=1,2=E+1=2E,OC=OD,D=2=2E,BOD=E+D,E+2E=75,E=2524九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1x90)天的售价与销量的相关信息如下表:时间x(天)1x5050x90售价(元/件)x+4090每天销量(件)2002x已知该商品的进价为每件30元,设销售该商品的每天利润为y元(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果【考点】二次函数的应用【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案【解答】解:(1)当1x50时,y=(x+4030)=2x2+180x+2000,当50x90时,y=(9030)=120x+12000,综上所述:y=;(2)当1x50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=2452+18045+2000=6050,当50x90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1x50时,y=2x2+180x+20004800,解得20x70,因此利润不低于4800元的天数是20x50,共30天;当50x90时,y=120x+120004800,解得x60,因此利润不低于4800元的天数是50x60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元25ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB、AC于点F、G,连接BE(1)如图(a)所示,当点D在线段BC上时求证:AEBADC;探究四边形BCGE是怎样特殊的四边形?并说明理由;(2)如图(b)所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立;(3)在(2)的情况下,当点D运动到什么位置时,四边形BCGE是菱形?并说明理由【考点】全等三角形的判定;平行四边形的判定;菱形的判定【分析】(1)根据等边三角形的性质可得AB=AC,AE=AD,BAC=EAD=60,然后求出BAE=CAD,再利用“边角边”证明AEB和ADC全等;四边形BCGE是平行四边形,因为AEBADC,所以可得ABE=C=60,进而证明ABE=BAC,则可得到EBGC又EGBC,所以四边形BCGE是平行四边形;(2)根据(1)的思路解答即可(3)当CD=CB时,四边形BCGE是菱形,由(1)可知AEBADC,可得BE=CD,再证明BE=CB,即邻边相等的平行四边形是菱形【解答】证明:(1)ABC和ADE都是等边三角形,AE=AD,AB=AC,EAD=BAC=60又EAB

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论