




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
“讲忠诚、严纪律、立政德”三者相互贯通、相互联系。忠诚是共产党人的底色,纪律是不能触碰的底线,政德是必须修炼的素养。永葆底色、不碰底线三元一次方程组的解法教学目标知识与技能:1、了解三元一次方程组的概念. 2、会解某个方程只有两元的简单的三元一次方程组.过程与方法: 通过探究三元一次方程组的解法,进一步感受到消元的思想.情感、态度、价值观:培养分析、解决问题的能力,体会三元变二元,二元变一元的消元思想,感受数学魅力。教学重点(1)使学生会解简单的三元一次方程组(2)通过本节学习,进一步体会“消元”的基本思想教学难点针对方程组的特点,灵活使用代入法、加减法等重要方法教学方法小组合作交流探究,指导讲解教学准备课件教学过程1、 自主学习解方程组二、深入学习1、 定义 小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张?提出问题:1题目中有几个条件?2问题中有几个未知量3根据等量关系(三个量关系) 每张面值 张数 = 钱数1元xx2元y2y5元z5z合 计1222注1元纸币的数量是2元纸币数量的4倍,即x=4y你解:(学生叙述个人想法,教师板书)设1元,2元,5元的张数为x张,y张,z张. 根据题意列方程组为:定义:这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组。2、 解法 怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(展开思路,畅所欲言)例1 .解方程组分析1:发现三个方程中x的系数都是1,因此确定用减法“消x”.分析2:方程是关于x的表达式,确定“消x”的目标.【方法归纳】根据方程组的特点,由学生归纳出此类方程组为:类型一:有表达式,用代入法.针对上面的例题进而分析,例1中方程中缺z,因此利用、消z,可达到消元构成二元一次方程组的目的. 根据方程组的特点,由学生归纳出此类方程组类型二:缺某元,消某元.教师提示:当然我们还可以通过消掉未知项y来达到将“三元”转化为“二元”目的,同学可以课下自行尝试一下.三、课堂小结1.解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程 即三元一次方程组 二元一次方程组 一元一次方程2.解题要有策略,今天我们学到的策略是:有表达式,用代入法;缺某元,消某元.四、课堂检测106页练习1,2 二次备课作业布置1. 解方程组 你能有多少种方法求解它?本题方法灵活多样,有利于学生广开思路进行解法探究。2. 教材106页,2;习题8.41.板书设计8.4解三元一次方程组(1)1、 定义2、解法:有表达式,用代入法;缺某元,消某元.教学反思政德才能立得稳、立得牢。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45721.1-2025半导体器件应力迁移试验第1部分:铜应力迁移试验
- GB/T 45716-2025半导体器件金属氧化物半导体场效应晶体管(MOSFETs)的偏置温度不稳定性试验
- GB/T 45718-2025半导体器件内部金属层间的时间相关介电击穿(TDDB)试验
- 国家开放大学学习网电大传感器与测试技术形考作业1234答案
- 医学美容技术专业教学标准(高等职业教育专科)2025修订
- 2025年中国可穿戴医疗监测智能设备行业市场全景分析及前景机遇研判报告
- 2025年中国精细陶瓷行业市场全景分析及前景机遇研判报告
- 中国装饰画行业市场评估分析及发展前景调研战略研究报告
- 中国二氧化氯发生器行业发展前景预测及投资策略研究报告
- 培训职工课件
- 2025年养老护理员职业考试试题及答案
- 揭阳惠来县纪委监委等部门属下事业单位招聘笔试真题2024
- 春苏教版六年级数学总复习30课时教学设计
- 党课课件含讲稿:以作风建设新成效激发干事创业新作为
- 西安美术学院《舞台编导艺术》2023-2024学年第二学期期末试卷
- 城投公司工程管理制度
- 2025全国农业(水产)行业职业技能大赛(水生物病害防治员)选拔赛试题库(含答案)
- 油浸式变压器 电抗器 检修规范标准
- 2025年中国膨润土猫砂项目投资可行性研究报告
- 职业技术学院2024级智能机器人技术专业人才培养方案
- 猩红热课件完整版本
评论
0/150
提交评论