高中数学 第二章 平面解析几何初步 2_2_4 点到直线的距离学案 新人教b版必修2_第1页
高中数学 第二章 平面解析几何初步 2_2_4 点到直线的距离学案 新人教b版必修2_第2页
高中数学 第二章 平面解析几何初步 2_2_4 点到直线的距离学案 新人教b版必修2_第3页
高中数学 第二章 平面解析几何初步 2_2_4 点到直线的距离学案 新人教b版必修2_第4页
高中数学 第二章 平面解析几何初步 2_2_4 点到直线的距离学案 新人教b版必修2_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2.4点到直线的距离学习目标1.掌握点到直线的距离公式,会用公式解决有关问题.2.掌握两平行线之间的距离公式,并会求两平行线之间的距离.知识链接1.已知点P1(x1,y1),P2(x2,y2),则两点间的距离|P1P2|.2.如图平面上点P到直线l的距离,是指从点P到直线l的垂线段的长度.预习导引1.点到直线的距离公式点P(x1,y1)到直线l:AxByC0的距离d.2.两平行线间的距离(1)求法:两平行线间的距离可转化为一条直线上一点到另一条直线的距离.(2)结论:两平行直线AxByC10与AxByC20的距离为d.要点一点到直线的距离例1求点P(3,2)到下列直线的距离:(1)yx;(2)y6;(3)x4.解(1)把方程yx写成3x4y10,由点到直线的距离公式得d.(2)方法一把方程y6写成0xy60,由点到直线的距离公式得d8.方法二因为直线y6平行于x轴,所以d|6(2)|8.(3)因为直线x4平行于y轴,所以d|43|1.规律方法1.求点到直线的距离,首先要把直线化成一般式方程,然后再套用点到直线的距离公式.2.当点与直线有特殊位置关系时,也可以用公式求解,但是这样会把问题变复杂了,要注意数形结合.3.几种特殊情况的点到直线的距离:(1)点P0(x0,y0)到直线ya的距离d|y0a|;(2)点P0(x0,y0)到直线xb的距离d|x0b|.跟踪演练1若点(a,2)到直线l:yx3的距离是1,则a_.答案5解析直线l:yx3可变形为xy30.由点(a,2)到直线l的距离为1,得1,解得a5.要点二两平行线间的距离例2求两平行线l1:2xy10与l2:4x2y30之间的距离.解方法一在直线l1:2xy10上任取一点,不妨取点P(0,1),则点P到直线l2:4x2y30的距离为d,l1与l2间的距离为.方法二将直线l2的方程化为2xy0.又l1的方程为2xy10,C11,C2,又A2,B1,由两平行直线间的距离公式得:d.规律方法1.针对这个类型的题目一般有两种思路:(1)利用“化归”思想将两平行直线间的距离转化为求其中一条直线上任意一点到另一条直线的距离.(2)利用两条平行直线间距离公式d.2.当两直线都与x轴(或y轴)垂直时,可利用数形结合来解决.(1)两直线都与x轴垂直时,l1:xx1,l2:xx2,则d|x2x1|;(2)两直线都与y轴垂直时,l1:yy1,l2:yy2,则d|y2y1|.跟踪演练2求与直线l:5x12y60平行且与直线l距离为3的直线方程.解与l平行的直线方程为5x12yb0,根据两平行直线间的距离公式得3,解得b45或b33.所以所求直线方程为5x12y450或5x12y330.要点三距离公式的综合应用例3已知直线l经过直线2xy50与x2y0的交点.(1)若点A(5,0)到l的距离为3,求l的方程;(2)求点A(5,0)到l的距离的最大值.解方法一联立交点P(2,1),当直线斜率存在时,设l的方程为y1k(x2),即kxy12k0,3,解得k,l的方程为y1(x2),即4x3y50.而直线斜率不存在时直线x2也符合题意,故所求l的方程为4x3y50或x2.方法二经过两已知直线交点的直线系方程为(2xy5)(x2y)0,即(2)x(12)y50,3,即22520,解得2或,l的方程为4x3y50或x2.(2)由,解得交点P(2,1),过P任意作直线l,设d为A到l的距离,则d|PA|(当lPA时等号成立),dmax|PA|.规律方法数形结合、运动变化的思想方法在解题中经常用到.当图形中的元素运动变化时我们能直观观察到一些量的变化情况,进而可求出这些量的变化范围.跟踪演练3两条互相平行的直线分别过点A(6,2)和B(3,1),如果两条平行直线间的距离为d,求:(1)d的变化范围;(2)当d取最大值时,两条直线的方程.解(1)如图,当两条平行直线与AB垂直时,两平行直线间的距离最大,为d|AB|3,当两条平行线各自绕点B,A逆时针旋转时,距离逐渐变小,越来越接近于0,所以0d3,即所求的d的变化范围是(0,3.(2)当d取最大值3时,两条平行线都垂直于AB,所以k3,故所求的直线方程分别为y23(x6)和y13(x3),即3xy200和3xy100.1.点(1,1)到直线xy10的距离是()A. B. C. D.答案A解析d.2.两条平行线l1:3x4y70和l2:3x4y120间的距离为()A.3 B.2 C.1 D.答案C解析d1.3.若点(1,a)到直线xy10的距离是,则实数a为()A.1 B.5C.1或5 D.3或3答案C解析由点到直线距离公式:,a1或5,故选C.4.点(5,3)到直线x20的距离等于()A.7 B.5 C.3 D.2答案A解析直线x20,即x2为平行于y轴的直线,所以点(5,3)到x2的距离d|5(2)|7.5.分别过点A(2,1)和点B(3,5)的两条直线均垂直于x轴,则这两条直线间的距离是_.答案5解析d|3(2)|5.1.应用点P(x0,y0)到直线AxByC0(A、B不同时为零)距离公式d的前提是直线方程为一般式.特别地,当直线方程A0或B0时,上述公式也适用,且可以应用数形结合思想求解.2.两条平行线间的距离处理方法有两种:一是转化为点到直线的距离,其体现了数学上的转化与化归思想.二是直接套用公式d,其中l1:AxByC10,l

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论