已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.1倍角公式学习目标1.会从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式.2.能熟练运用二倍角的公式进行简单的恒等变换并能灵活地将公式变形运用.知识点一二倍角公式的推导思考1二倍角的正弦、余弦、正切公式就是用的三角函数表示2的三角函数的公式.根据前面学过的两角和与差的正弦、余弦、正切公式,你能推导出二倍角的正弦、余弦、正切公式吗?思考2根据同角三角函数的基本关系式sin2cos21,你能否只用sin 或cos 表示cos 2?梳理二倍角的正弦、余弦、正切公式sin22sin cos ,(S2)cos 2cos2sin22cos2112sin2,(C2)tan 2.(T2)知识点二二倍角公式的变形(1)公式的逆用2sin cos sin 2,sin cos _,cos2sin2_,tan 2.(2)二倍角公式的重要变形升幂公式和降幂公式升幂公式1cos 2_,1cos 2_,1cos _,1cos _ .降幂公式cos2,sin2.类型一给角求值例1求下列各式的值.(1)cos 72cos 36;(2)cos215;(3);(4).反思与感悟对于给角求值问题,一般有两类:(1)直接正用、逆用二倍角公式,结合诱导公式和同角三角函数的基本关系对已知式子进行转化,一般可以化为特殊角.(2)若形式为几个非特殊角的三角函数式相乘,则一般逆用二倍角的正弦公式,在求解过程中,需利用互余关系配凑出应用二倍角公式的条件,使得问题出现可以连用二倍角的正弦公式的形式.跟踪训练1求下列各式的值:(1)cos cos cos ;(2).类型二给值求值例2(1)若sin cos ,则sin 2_.(2)若tan ,则cos22sin 2等于()A. B. C.1 D.引申探究在本例(1)中,若改为sin cos ,求sin 2.反思与感悟(1)条件求值问题常有两种解题途径:对题设条件变形,把条件中的角、函数名向结论中的角、函数名靠拢.对结论变形,将结论中的角、函数名向题设条件中的角、函数名靠拢,以便将题设条件代入结论.(2)一个重要结论:(sin cos )21sin 2.跟踪训练2已知tan 2.(1)求tan的值;(2)求的值.类型三利用倍角公式化简例3化简.反思与感悟(1)对于三角函数式的化简有下面的要求:能求出值的应求出值.使三角函数种数尽量少.使三角函数式中的项数尽量少.尽量使分母不含有三角函数.尽量使被开方数不含三角函数.(2)化简的方法:弦切互化,异名化同名,异角化同角.降幂或升幂.跟踪训练3化简下列各式:(1),则_;(2)为第三象限角,则_.1.sin cos 的值等于()A. B. C. D.2.sin4cos4等于()A. B. C. D.3._.4.设sin 2sin ,则tan 2的值是_.5.已知sin,0x,求的值.1.对于“二倍角”应该有广义上的理解,如:8是4的二倍;6是3的二倍;4是2的二倍;3是的二倍;是的二倍;是的二倍;(nN).2.二倍角余弦公式的运用在二倍角公式中,二倍角的余弦公式最为灵活多样,应用广泛.二倍角的常用形式:1cos 22cos2;cos2;1cos 22sin2;sin2.答案精析问题导学知识点一思考1sin 2sin()sin cos cos sin 2sin cos ;cos 2cos()cos cos sin sin cos2sin2;tan 2tan().思考2cos 2cos2sin2cos2(1cos2)2cos21;或cos 2cos2sin2(1sin2)sin212sin2.知识点二(1)sin 2cos 2(2)2cos22sin22cos22sin2题型探究例1解(1)cos 36cos 72.(2)cos215(2cos2151)cos 30.(3)222.(4)4.跟踪训练1(1)(2)4例2(1)(2)A引申探究解由题意,得(sin cos )2,12sin cos ,即1sin 2,sin 2.跟踪训练2解(1)tan3.(2)1.例3解原式1.跟踪训练3(1)sin cos (2)0当堂训练1B2.B3.14.5解原式2sin.sincos,且
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学音乐国测模拟试卷(苏少版四年级上册)及答案(三套)
- 五年级信息技术上册第课校园环境调查报告教案浙江摄影版(2025-2026学年)
- 2025年秋浙教版小学信息科技六年级上册期末测试卷附答案
- 人才流动专员案例分析
- 健康生活指南饮食运动与生活习惯优化建议
- 内审人员职业发展指南
- 药物原理分析题库及答案
- 中医博士求职面试实战经验案例分享如何应对压力与挑战
- 公关传播策略及沟通技巧全解
- 2025年信息网络安全自查报告范文
- 4.1中国的机遇与挑战(课件)-2025-2026学年统编版道德与法治九年级下册
- 2025海南大华会计师事务所(特殊普通合伙)海南分所人才招聘笔试考试备考试题及答案解析
- 雨课堂学堂云在线《中国特色社会主义理论与实践研究(北理 )》单元测试考核答案
- 十五五规划纲要:应急管理体系现代化的顶层设计与能力提升
- 学术论文标准格式规范
- 2025年秋季川省成都国有企业招聘(纪检)练习题及答案
- 供配电技术考试及答案
- 小儿电解质补液课件
- 2026小红书营销IP通案
- 《化工企业可燃液体常压储罐区安全管理规范》(AQ3063-2025)对标检查表
- 债务处理委托协议书
评论
0/150
提交评论