




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
突破点3平面向量(对应学生用书第14页) 核心知识提炼 提炼1 平面向量共线、垂直的两个充要条件若a(x1,y1),b(x2,y2),则:(1)abab(b0)x1y2x2y10.(2)abab0x1x2y1y20. 提炼2 数量积常见的三种应用已知两个非零向量a(x1,y1),b(x2,y2),则(1)证明向量垂直:abab0x1x2y1y20.(2)求向量的长度:|a|.(3)求向量的夹角:cosa,b.提炼3平面向量解题中应熟知的常用结论(1)A,B,C三点共线的充要条件是存在实数,有,且1.(2)C是线段AB中点的充要条件是()(3)G是ABC的重心的充要条件为0,若ABC的三个顶点坐标分别为A(x1,y1),B(x2,y2),C(x3,y3),则ABC的重心坐标为,.(4)P为ABC的垂心(5)非零向量a,b垂直的充要条件:abab0|ab|ab|x1x2y1y20.(6)向量b在a的方向上的投影为|b|cos ,向量a在b的方向上的投影为|a|cos .高考真题回访回访1平面向量的线性运算1(2017浙江高考)已知向量a,b满足|a|1,|b|2,则|ab|ab|的最小值是_,最大值是_42设a,b的夹角为.|a|1,|b|2,|ab|ab|.令y,则y2102.0,cos20,1,y216,20,y4,2,即|ab|ab|4,22(2014浙江高考)记maxx,yminx,y设a,b为平面向量,则()Amin|ab|,|ab|min|a|,|b|Bmin|ab|,|ab|min|a|,|b|Cmax|ab|2,|ab|2|a|2|b|2Dmax|ab|2,|ab|2|a|2|b|2D由于|ab|,|ab|与|a|,|b|的大小关系与夹角大小有关,故A,B错当a,b夹角为锐角时,|ab|ab|,此时,|ab|2|a|2|b|2;当a,b夹角为钝角时,|ab|a|2|b|2;当ab时,|ab|2|ab|2|a|2|b|2,故选D.3(2014浙江高考)设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.() 【导学号:68334048】A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定B|bta|2b22abtt2a2|a|2t22|a|b|cos t|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin 1,即|b|.即确定,|b|唯一确定回访2平面向量的数量积及其应用4(2013浙江高考)设ABC,P0是边AB上一定点,满足P0BAB,且对于边AB上任一点P, 恒有,则()AABC90BBAC90CABACDACBCDA项,若ABC90,如图,则|cosBPC|2,|2.当点P落在点P0的右侧时,|2|2,即,不符合;B项,若BAC90,如图,则|cosBPC|,|3.当P为AB的中点时,4,不符合;C项,若ABAC,假设BAC120,如图,则AC2,|cosBPC|,|cosBP0C|5.当P落在A点时,|8,所以,不符合故选D.5(2016浙江高考)已知平面向量a,b,|a|1,|b|2,ab1,若e为平面单位向量,则|ae|be|的最大值是_. 【导学号:68334049】ab|a|b|cosa,b12cosa,b1,cosa,b,a,b60.以a的起点为原点,所在直线为x轴建立直角坐标系,则a(1,0),b(1,)设e(cos ,sin ),则|ae|be|cos |cos sin |cos |cos |sin |2|cos |sin |.6(2015浙江高考)已知e1,e2是平面单位向量,且e1e2.若平面向量b满足be1be21,则|b|_.e1e2,|e1|e2|cose1,e2,e1,e260.又be1be210,b,e1b,e230.由be11,得|b|e1|cos 301,|b|.7(2013浙江高考)设e1,e2为单位向量,非零向量bxe1ye2,x,yR.若e1,e2的夹角为,则的最大值等于_2根据题意,得2.因为2,所以024,所以02.故的最大值为2.(对应学生用书第15页)热点题型1平面向量的运算题型分析:该热点是高考的必考点之一,考查方式主要体现在以下两个方面:一是以平面图形为载体考查向量的线性运算;二是以向量的共线与垂直为切入点,考查向量的夹角、模等.【例1】(1)(2017杭州第二次调研)在梯形ABCD中,ABDC,ABAD,ADDC1,AB2.若,则|t|(tR)的取值范围是() 【导学号:68334050】A.B,)C.D1,)(2)已知ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE2EF,则的值为()AB.C.D.(1)A(2)B(1)以A为坐标原点,AB,AD分别为x轴,y轴建立直角坐标系(图略),则D(0,1),B(2,0),C(1,1),设P(x,y),由得(x,y)(0,1)(2,0),x,y,所以P,(1,1),即|t|,当且仅当t时等号成立,故选A.(2)如图所示,.又D,E分别为AB,BC的中点,且DE2EF,所以,所以.又,则()2222.又|1,BAC60,故11.故选B.方法指津1平面向量的线性运算要抓住两条主线:一是基于“形”,通过作出向量,结合图形分析;二是基于“数”,借助坐标运算来实现2正确理解并掌握向量的概念及运算,强化“坐标化”的解题意识,注重数形结合思想、方程思想与转化思想的应用提醒:运算两平面向量的数量积时,务必要注意两向量的方向变式训练1(1)已知向量a(1,2),b(3,1),c(x,4),若(ab)c,则c(ab)()A(2,12)B(2,12)C14D10(2)已知e1,e2是不共线向量,ame12e2,bne1e2,且mn0.若ab,则_. 【导学号:68334051】(1)C(2)2(1)易知ab(4,1),由(ab)c,可得(4)x140,即4x40,解得x1,c(1,4)而ab(2,3),c(ab)124314.故选C.(2)ab,ab,即me12e2(ne1e2),则解得2.热点题型2三角与向量的综合问题题型分析:平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件.【例2】(名师押题)已知向量a,b(cos x,1)(1)当ab时,求cos2xsin 2x的值;(2)设函数f(x)2(ab)b,已知在ABC中,内角A,B,C的对边分别为a,b,c.若a,b2,sin B,求yf(x)4cos 的取值范围解(1)ab,cos xsin x0,2分tan x,4分cos2xsin 2x.6分(2)f(x)2(ab)bsin ,8分由正弦定理得,可得sin A.9分ba,A,10分yf(x)4cossin.13分x,2x,1y,即y的取值范围是.15分方法指津平面向量与三角函数问题的综合主要利用向量数量积运算的坐标形式,多与同角三角函数关系、诱导公式以及和角与倍角等公式求值等问题相结合,计算的准确性和三角变换的灵活性是解决此类问题的关键点变式训练2在平面直角坐标系xOy中,已知向量m,n(sin x,cos x),x.(1)若mn,求tan x的值;(2)若m与n的夹角为,求x的值解(1)若mn,则mn0.由向量数量积的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省株洲市荷塘区方舟兰天中学等校2024-2025学年八年级下学期6月期末考试化学试卷(含答案)
- 部编版三年级语文上册期末测试卷 (三)(含答案)
- 2026届福建省重点中学化学高二第一学期期末预测试题含答案
- 重庆九龙坡区高2026届高一化学第一学期期末达标检测试题含解析
- 物业公司特定管理方案
- 市政修路安全知识培训课件
- 2025-2026秋季学年第一学期升旗仪式主持词(22周):第4周 养成教育月《涵养文明习惯点亮成长底色》
- 手机促销方案设计
- 江苏省连云港市赣榆高级中学2026届高三上化学期中检测模拟试题含解析
- 机器视觉技术及应用 课件 任务2 零件分类
- 报关员考试培训课件
- 海底捞培训体系
- 河南近10年中考真题英语2014-2023年含答案
- 影视艺术欣赏课程(教案)
- 人工智能技术在司法领域的应用与法律挑战
- 消防维保方案(消防维保服务)(技术标)
- 2023智联招聘行测题库
- 隧道洞渣加工石料组织管理方案
- 音乐美学.课件
- 健康体检证明
- 北京大学信息管理系《图书馆学概论》精品课件资料
评论
0/150
提交评论