




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考文科综合测试题(集合 函数 倒数 平面向量)一、选择题1. 上海高考数学试题(文科)设常数,集合,.若,则的取值范围为()ABCD【答案】B 2. (2013年高考安徽(文)已知,则()ABCD【答案】A3. (2013年高考辽宁卷(文)已知函数()ABCD【答案】D 4. (2014新课标全国卷W)设D、E、F分别为ABC的三边BC、CA、AB的中点,则()A B. C. D.5. (2014福建W)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则等于()A B. C. D.6. 【2015高考新课标1,理2】 =( )(A)(B)(C)(D)【答案】D【解析】原式= =,故选D.【考点定位】三角函数求值.【名师点睛】本题解题的关键在于观察到20与160之间的联系,会用诱导公式将不同角化为同角,再用两角和与差的三角公式化为一个角的三角函数,利用特殊角的三角函数值即可求出值,注意要准确记忆公式和灵活运用公式.7. 【2015高考山东,理3】要得到函数的图象,只需要将函数的图象()(A)向左平移个单位 (B)向右平移个单位(C)向左平移个单位 (D)向右平移个单位【答案】B【解析】因为,所以要得到函数的图象,只需将函数的图象向右平移个单位.故选B.【考点定位】三角函数的图象变换.【名师点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.8. (上海,15)把曲线ycosx+2y1=0先沿x轴向右平移个单位,再沿y轴向下平移1个单位,得到的曲线方程是()A.(1y)sinx+2y3=0 B.(y1)sinx+2y3=0C.(y+1)sinx+2y+1=0 D.(y+1)sinx+2y+1=09. (15年安徽文科)。【答案】-1【解析】试题分析:原式考点:1.指数幂运算;2.对数运算.10. (2007北京)已知是所在平面内一点,为边中点,且,那么()答案 11. (2013年高考天津卷(文)设函数. 若实数a, b满足, 则()ABCD【答案】A 12. (2013年湖北(文)x为实数,表示不超过的最大整数,则函数在上为()A奇函数B偶函数C增函数D周期函数【答案】D 二、填空题13. 平面向量,(),且与的夹角等于与的夹角,则A B C D【答案】D【解析1】因为,所以,又所以即【解析2】由几何意义知为以,为邻边的菱形的对角线向量,又故14. (2013年高考山东卷(文)函数的定义域为()A(-3,0B(-3,1CD【答案】A15. 【2015高考新课标1,理8】函数=的部分图像如图所示,则的单调递减区间为( )【答案】D【考点定位】三角函数图像与性质【名师点睛】本题考查函数的图像与性质,先利用五点作图法列出关于方程,求出,或利用利用图像先求出周期,用周期公式求出,利用特殊点求出,再利用复合函数单调性求其单调递减区间,是中档题,正确求使解题的关键.16. 【2015高考四川,理12】 .【答案】.【解析】法一、.法二、.法三、.【考点定位】三角恒等变换及特殊角的三角函数值.有.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.【名师点睛】这是一个来自于课本的题,这告诉我们一定要立足于课本.首先将两个角统一为一个角,然后再化为一个三角函数一般地,有.第二种方法是直接凑为特殊角,利用特殊角的三角函数值求解.三、解答题17. 已知函数(,为自然对数的底数)(1)若曲线在点处的切线平行于轴,求的值;(2)求函数的极值;(3)当的值时,若直线与曲线没有公共点,求的最大值本小题主要考查函数与导数,函数的单调性、极值、零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想满分14分解:()由,得又曲线在点处的切线平行于轴,得,即,解得(),当时,为上的增函数,所以函数无极值当时,令,得,;,所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值综上,当时,函数无极小值;当,在处取得极小值,无极大值()当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解假设,此时,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故又时,知方程在上没有实数解所以的最大值为解法二:()()同解法一()当时,直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解当时,方程(*)可化为,在上没有实数解当时,方程(*)化为令,则有令,得,当变化时,的变化情况如下表:当时,同时当趋于时,趋于,从而的取值范围为所以当时,方程(*)无实数解,解得的取值范围是综上,得的最大值为18. 设函数(1) 当时,求函数的单调区间;(2) 当时,求函数在上的最小值和最大值【解析】:(1)当时,在上单调递增.(2)当时,其开口向上,对称轴,且过-kkk(i)当,即时,在上单调递增,从而当时,取得最小值 ,当时,取得最大值.(ii)当,即时,令解得:,注意到,(注:可用韦达定理判断,,从而;或者由对称结合图像判断)的最小值,的最大值综上所述,当时,的最小值,最大值解法2(2)当时,对,都有,故故,而,所以,ks5u【解析】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知时最小,时最大,只需证即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深的功力,这也正符合了2012年高考年报的“对中学教学的要求重视高一教学与初中课堂衔接课”.19. 已知函数(I)求;(II)若20. (15北京理科)已知函数() 求的最小正周期;() 求在区间上的最小值【答案】(1),(2)【解析】试题分析:先用降幂公式和辅助角公式进行三角恒等变形,把函数化为形式,再利用周期公式求出周期,第二步由于则可求出,借助正弦函数图象找出在这个范围内当,即时,取得最小值为:.试题解析:() (1)的最小正周期为;(2),当时,取得最小值为:考点: 1.三角函数式的恒等变形;2.三角函数图像与性质.21. (2008年东北三省三校高三第一次联合模拟考试)已知向量(1)当时,求的值;(2)求在上的值域解(1),(5分)(2),函数(10分)22. 【2012高考江苏18】若函数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点;(3)设,其中,求函数的零点个数【答案】解:(1)由,得。 1和是函数的两个极值点, ,解得。 (2) 由(1)得, , ,解得。 当时,;当时, 是的极值点。 当或时, 不是的极值点。 的极值点是2。(3)令,则。 先讨论关于 的方程 根的情况:当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,的两个不同的根为一和2。当时, ,一2 , 1,1 ,2 都不是的根。由(1)知。 当时, ,于是是单调增函数,从而。此时在无实根。 当时,于是是单调增函数。又,的图象不间断, 在(1 , 2 )内有唯一实根。同理,在(一2 ,一I )内有唯一实根。 当时,于是是单调减两数。又, ,的图象不间断,在(一1,1 )内有唯一实根。因此,当时,有两个不同的根满足;当 时有三个不同的根,满足。现考虑函数的零点:( i )当时,有两个根,满足。而有三个不同的根,有两个不同的根,故有5 个零点。( 11 )当时,有三个不同的根,满足。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论