




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter 9 Multicriteria Decision Making Introduction to Management Science 8th Edition by Bernard W. Taylor III 1Chapter 9 - Multicriteria Decision Making Goal Programming Graphical Interpretation of Goal Programming Computer Solution of Goal Programming Problems with QM for Windows and Excel The Analytical Hierarchy Process Chapter Topics 2Chapter 9 - Multicriteria Decision Making Study of problems with several criteria, multiple criteria, instead of a single objective when making a decision. Two techniques discussed: goal programming, and the analytical hierarchy process. Goal programming is a variation of linear programming considering more than one objective (goals) in the objective function. The analytical hierarchy process develops a score for each decision alternative based on comparisons of each under different criteria reflecting the decision makers preferences. Overview 3Chapter 9 - Multicriteria Decision Making Beaver Creek Pottery Company Example: Maximize Z = $40x1 + 50x2 subject to: 1x1 + 2x2 40 hours of labor 4x2 + 3x2 120 pounds of clay x1, x2 0 Where: x1 = number of bowls produced x2 = number of mugs produced Goal Programming Model Formulation (1 of 2) 4Chapter 9 - Multicriteria Decision Making Adding objectives (goals) in order of importance, the company: Does not want to use fewer than 40 hours of labor per day. Would like to achieve a satisfactory profit level of $1,600 per day. Prefers not to keep more than 120 pounds of clay on hand each day. Would like to minimize the amount of overtime. Goal Programming Model Formulation (2 of 2) 5Chapter 9 - Multicriteria Decision Making All goal constraints are equalities that include deviational variables d- and d+. A positive deviational variable (d+) is the amount by which a goal level is exceeded. A negative deviation variable (d-) is the amount by which a goal level is underachieved. At least one or both deviational variables in a goal constraint must equal zero. The objective function in a goal programming model seeks to minimize the deviation from goals in the order of the goal priorities. Goal Programming Goal Constraint Requirements 6Chapter 9 - Multicriteria Decision Making Labor goals constraint (1, less than 40 hours labor; 4, minimum overtime): Minimize P1d1-, P4d1+ Add profit goal constraint (2, achieve profit of $1,600): Minimize P1d1-, P2d2-, P4d1+ Add material goal constraint (3, avoid keeping more than 120 pounds of clay on hand): Minimize P1d1-, P2d2-, P3d3+, P4d1+ Goal Programming Goal Constraints and Objective Function (1 of 2) 7Chapter 9 - Multicriteria Decision Making Complete Goal Programming Model: Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Goal Programming Goal Constraints and Objective Function (2 of 2) 8Chapter 9 - Multicriteria Decision Making Changing fourth-priority goal limits overtime to 10 hours instead of minimizing overtime: d1- + d4 - - d4+ = 10 minimize P1d1 -, P2d2 -, P3d3 +, P4d4 + Addition of a fifth-priority goal- “important to achieve the goal for mugs”: x1 + d5 - = 30 bowls x2 + d6 - = 20 mugs minimize P1d1 -, P2d2 -, P3d3 -, P4d4 -, 4P5d5 -, 5P5d6 - Goal Programming Alternative Forms of Goal Constraints (1 of 2) 9Chapter 9 - Multicriteria Decision Making Goal Programming Alternative Forms of Goal Constraints (2 of 2) Complete Model with New Goals: Minimize P1d1-, P2d2-, P3d3-, P4d4-, 4P5d5-, 5P5d6- subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50x2 + d2- - d2+ = 1,600 4x1 + 3x2 + d3- - d3+ = 120 d1+ + d4- - d4+ = 10 x1 + d5- = 30 x2 + d6- = 20 x1, x2, d1-, d1+, d2-, d2+, d3-, d3+, d4-, d4+, d5-, d6- 0 10Chapter 9 - Multicriteria Decision Making Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Figure 9.1 Goal Constraints Goal Programming Graphical Interpretation (1 of 6) 11Chapter 9 - Multicriteria Decision Making Figure 9.2 The First-Priority Goal: Minimize Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Goal Programming Graphical Interpretation (2 of 6) 12Chapter 9 - Multicriteria Decision Making Figure 9.3 The Second-Priority Goal: Minimize Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Goal Programming Graphical Interpretation (3 of 6) 13Chapter 9 - Multicriteria Decision Making Figure 9.4 The Third-Priority Goal: Minimize Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Goal Programming Graphical Interpretation (4 of 6) 14Chapter 9 - Multicriteria Decision Making Figure 9.5 The Fourth-Priority Goal: Minimize Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Goal Programming Graphical Interpretation (5 of 6) 15Chapter 9 - Multicriteria Decision Making Goal programming solutions do not always achieve all goals and they are not optimal, they achieve the best or most satisfactory solution possible. Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 x1 = 15 bowls x2 = 20 mugs d1- = 15 hours Goal Programming Graphical Interpretation (6 of 6) 16Chapter 9 - Multicriteria Decision Making Exhibit 9.1 Minimize P1d1-, P2d2-, P3d3+, P4d1+ subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50 x2 + d2 - - d2 + = 1,600 4x1 + 3x2 + d3 - - d3 + = 120 x1, x2, d1 -, d1 +, d2 -, d2 +, d3 -, d3 + 0 Goal Programming Computer Solution Using QM for Windows (1 of 3) 17Chapter 9 - Multicriteria Decision Making Exhibit 9.2 Goal Programming Computer Solution Using QM for Windows (2 of 3) 18Chapter 9 - Multicriteria Decision Making Exhibit 9.3 Goal Programming Computer Solution Using QM for Windows (3 of 3) 19Chapter 9 - Multicriteria Decision Making Exhibit 9.4 Goal Programming Computer Solution Using Excel (1 of 3) 20Chapter 9 - Multicriteria Decision Making Exhibit 9.5 Goal Programming Computer Solution Using Excel (2 of 3) 21Chapter 9 - Multicriteria Decision Making Exhibit 9.6 Goal Programming Computer Solution Using Excel (3 of 3) 22Chapter 9 - Multicriteria Decision Making Minimize P1d1-, P2d2-, P3d3-, P4d4-, 4P5d5-, 5P5d6- subject to: x1 + 2x2 + d1- - d1+ = 40 40x1 + 50x2 + d2- - d2+ = 1,600 4x1 + 3x2 + d3- - d3+ = 120 d1+ + d4- - d4+ = 10 x1 + d5- = 30 x2 + d6- = 20 x1, x2, d1-, d1+, d2-, d2+, d3-, d3+, d4-, d4+, d5-, d6- 0 Goal Programming Solution for Altered Problem Using Excel (1 of 6) 23Chapter 9 - Multicriteria Decision Making Exhibit 9.7 Goal Programming Solution for Altered Problem Using Excel (2 of 6) 24Chapter 9 - Multicriteria Decision Making Exhibit 9.8 Goal Programming Solution for Altered Problem Using Excel (3 of 6) 25Chapter 9 - Multicriteria Decision Making Exhibit 9.9 Goal Programming Solution for Altered Problem Using Excel (4 of 6) 26Chapter 9 - Multicriteria Decision Making Exhibit 9.10 Goal Programming Solution for Altered Problem Using Excel (5 of 6) 27Chapter 9 - Multicriteria Decision Making Exhibit 9.11 Goal Programming Solution for Altered Problem Using Excel (6 of 6) 28Chapter 9 - Multicriteria Decision Making Exhibit 9.12 Goal Programming Excel Spreadsheets (1 of 4) 29Chapter 9 - Multicriteria Decision Making Exhibit 9.13 Goal Programming Excel Spreadsheets (2 of 4) 30Chapter 9 - Multicriteria Decision Making Exhibit 9.14 Goal Programming Excel Spreadsheets (3 of 4) 31Chapter 9 - Multicriteria Decision Making Exhibit 9.15 Goal Programming Excel Spreadsheets (4 of 4) 32Chapter 9 - Multicriteria Decision Making Goal Programming Example Problem Problem Statement Public relations firm survey interviewer staffing requirements determination. One person can conduct 80 telephone interviews or 40 personal interviews per day. $50/ day for telephone
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新煤矿安全培训形式课件
- 内蒙古安全驾驶技巧培训课件
- 化学品防护安全培训内容课件
- 先正达的安全培训课件
- 创卫劳动课件
- 第三单元名著导读经典常谈 公开课一等奖创新教学设计
- 内河轮机安全操作培训课件
- 4花之歌 +公开课一等奖创新教学设计
- 动作描写写作法36式(讲义)
- 微生物合成生物材料-洞察及研究
- 2025广东云浮市检察机关招聘劳动合同制司法辅助人员17人考试参考题库及答案解析
- 2025江西南昌市西湖城市建设投资发展集团有限公司及下属子公司招聘40人备考考试题库附答案解析
- 2025年工程物探试卷及答案
- 2025年军休服务管理机构招聘面试中常见陷阱问题解析与应对方法
- 涂装技能师考试题及答案
- 2025年烟草专卖局公开遴选面试高分策略及模拟题答案
- 乳制品行业智能化奶源管理与追溯方案
- 医务人员职业道德准则(2025年版)全文培训课件
- 恒瑞医药2023ESG社会责任报告:关注员工成长共建美好家园
- 医院网络信息安全培训
- 《构成设计基础》全套教学课件
评论
0/150
提交评论