




已阅读5页,还剩47页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4 3 简单线性规划的应用 1.会从实际情境中抽象出一些简单的二元线性 规划问题,并能加以解决 2.培养学生应用线性规划的有关知识解决实际 问题的意识. 1.对利用线性规划解决实际问题的考查是本节 的热点 2.本节内容常与实际问题结合问题 3.多以选择题、填空题形式考查,也可以解答 题形式考查. 1线性目标函数zaxby(a0,b0)把直 线l0:axby0向右平移时,所对应的z随之 ,把l0向左平移时,所对应的z随之 在平移过程中与可行域 相交的点 和 相交的点,可使目标函数zaxby c取得最值也就是最优解 增大 减小首先 最后 12,3 线性规划的应用 线性规划也是求值的一种,是求在某种限制范围之下的最大值或最小值的问题,其关键是列 出所有 ,不能有遗漏的部分,如有时变量要求为正实数或自然数,其次 是准确找到 ,如果数量关系多而杂,可以用列表等方法把关系理清 限制条件 目标函数 线性规划的理论和方法经常被应用于两类问题 中:一是在人力、物力、资金等资源一定的条 件下,如何使用其完成最多的任务;二是给定 一项任务,如何合理安排和规划,能用最少的 人力、物力、资金等资源来完成这项任务 在生产和生活中,常用于:下料问题;优 化安排活动问题;优化运营问题等 利用线性规划的方法解决实际问题的过程可分 为假设分配方案、确定目标函数、列出约束条 件、画出可行域、确定最优解、确定目标函数 最值、回归实际问题 1有5辆载重6吨的汽车,4辆载重4吨的汽车 ,设需载重6吨的汽车x辆,载重4吨的汽车y辆 ,则要运送最多的货物,完成这项运输任务的 线性目标函数为( ) Az6x4y Bz5x4y Czxy Dz4x5y 答案: A 2配制A、B两种药剂都需要甲、乙两种原料 ,用料要求如表所示(单位:千克) 药剂A、B至少各配一剂,且药剂A、B每剂售价 分别为100元、200元现有原料甲20千克,原 料乙25千克,那么可获得的最大销售额为 _百元 原 料 药 剂 甲乙 A25 B54 答案: 8 3有一化肥厂生产甲、乙两种混合肥料,生 产1车皮甲种肥料或1车皮乙种肥料需要的主要 原料和产生的利润分别为:磷酸盐2 t,硝酸 盐9 t,利润8 000元或磷酸盐2 t,硝酸盐5 t ,利润6 000元工厂现有库存磷酸盐20 t, 硝酸盐70 t,应生产甲、乙肥料各多少车皮可 获得最大利润? 即当直线8 000x6 000yz0过(5,5)点时 ,z取得最大值 即生产甲、乙两种肥料各5车皮时可获得最大 利润 某企业生产甲、乙两种产品已知生产每 吨甲产品要用A原料3吨、B原料2吨;生产每吨 乙产品要用A原料1吨、B原料3吨销售每吨甲 产品可获得利润5万元、每吨乙产品可获得利 润3万元该企业在一个生产周期内消耗A原料 不超过13吨、B原料不超过18吨,那么该企业 可获得最大利润是多少? 本题解答可先设出企业生产甲、乙两产 品的吨数,再根据原料限制条件列出约束 条件,建立目标函数求解 答:企业可获得的最大利润为 27万元 题后感悟 线性规划的应用问题,关键是根据题目正确的列出变量的约束条件与 目标函数,准确地画出可行域,确定其最优解 1.某工厂制造甲、乙两种产品,已知制造甲产 品1 kg要用煤9 t,电力4 KW,劳动力(按工作 日计算)3个;制造乙产品1 kg要用煤4 t,电 力5 KW,劳动力10个又知制成甲产品1 kg可 获利7万元,制成乙产品1 kg可获利12万元, 现在此工厂只有煤360 t,电力200 KW,劳动 力300个,在这种条件下应生产甲、乙两种产 品各多少千克获得最大经济效益? 解析: 设此工厂应分别生产甲、乙产品x kg 、y kg,利润z万元,则依题意可得约束条 件: 作出可行域,作直线l:7x12y0,把直线 l向右上方平移至l1位置,直线经过 可行域上 的点M,且与原点距离最大,此时z7x12y 取最大值 某公司的仓库A存有货物12吨,仓库B存有 货物8吨,现按7吨、8吨和5吨把货物分别调运 给甲、乙、丙三个商店,从仓库A运货物到商 店甲、乙、丙,每吨货物的运费分别为8元、6 元、9元;从仓库B运货物到商店甲、乙、丙, 每吨货物的运费分别为3元、4元、5元,问应 如何安排调运方案,才能使得从两个仓库运货 物到三个商店的总运费最少? 先设仓库A运给甲、乙商店的货物吨数,利 用题设 等量关系表示出其他运物吨数,从而 表示出目标函数总运费,列出线性约束 条件,建立线性规划模型 解题过 程 将实际问题 的一般语言翻译成 数学语言可得下表(即运费表,单位:元) 设仓库A运给甲、乙商店的货物分别为x吨、 y吨,则仓库A运给丙商店的货物为(12x y)吨;从而仓库B运给甲、乙、丙商店的货物 应分别为 (7x)吨,(8y)吨,5(12x y)吨,即(xy7)吨,于是总运费为 商店 每吨运费 仓库 甲乙丙 A869 B345 z8x6y9(12xy)3(7x)4(8 y)5(xy7)x2y126. 则问题转 化为求总运费 答:仓库A运给甲、乙、丙商店的货物分别为 0吨、8吨、4吨;仓库B运给甲、乙、丙商店 的货物分别为 7吨、0吨、1吨,此时,可使得 从两个仓库 运货物到三个商店的总运费最少 题后感悟 (1)线性规划问题中条件往往较多,需注意借助表格或图形梳理题目中的 条件 (2)在切实认真审题的基础上,将约束条件全部罗列出来,最后要检查能否取等号,未知 量是否为正整数或有其他范围的限制 2.某工厂要制造A种电子装置45台,B种电子装 置55台,需用薄钢板给每台装置配一个外壳, 已知薄钢板的面积有两种规格:甲种薄钢板每 张面积2 m2,可做A,B外壳分别为3个和5个, 乙种薄钢板每张面积3 m2,可做A,B外壳各6 个,求两种薄钢板各用多少张,才能使总的用 料面积最小 所以zmin253525. 即甲、乙两种钢板各用5张时 ,能保证制造 A,B两种外壳的数量,同时又能使总的用 料面积最小 某运输公司接受了向抗洪抢险地方每天至 少运送180吨支援物资的任务,该公司有8辆载 重为6吨的A型卡车与4辆载重为10吨的B型卡车 ,有10名驾驶员,每辆卡车每天往返的次数是 :A型卡车为4次,B型卡车为3次每辆卡车每 天往返的成本费为:A型卡车为320元,B型卡 车为504元,请你为该公司调配车辆,使公司 所花成本费最低 解答本题可先转化为线 性规划问题 ,再利 用线性规划问题 的知识求解,注意车辆 数 应为 整数 作直线l:320x504y0, 作一组与l平行的直线l:320x504y t(tR), 由题设x,y是可行域内的整点的横、纵坐标 在可行域内的整点中,点(8,0)使t取最小值, 即当l过点(8,0)时,t最小, 即zmin83202 560(元) 答:每天从公司调A型卡车8辆就能完成任务 ,且公司所花成本费最低 题后感悟 对于线性规划中的最优整数解的问题,当解方程组得到的解不是整数解时, 可用下面的方法求解: (1)平移直线法:先在可行域内打网格,再描整点,平移直线l,最先经过或最后经过的 整点坐标是整点最优解 (2)检验优值法:当可行域内整点个数较少时,也可将整点坐标逐一代入目标函数求值, 经比较得最优解 3.有粮食和石油两种物资,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运 输效果见下表: 现在要在一天内运输2 000t粮食和1 500t石油需至少安排多少艘轮船和多少架 飞机? 方式 效果 种类 轮船运 输量 (t) 飞机运 输量 (t) 粮食300150 石油250100 1解答线性规划应用题的一般步骤: (1)审题仔细阅读,对关键部分进行“精读 ”,准确理解题意,明确有哪些限制条件,起 关键作用的变量有哪些,由于线性规划应用题 中的量较多,为了理顺题目中量与量之间的关 系,有时可借助表格来理顺 (2)转化设元写出约束条件和目标函数 ,从而将实际问题转化为数学上的线性规划问 题 (3)求解解这个纯数学的线性规划问题 (4)作答就应用题提出的问题作出回答 2解答线性规划应用题应注意的问题 (1)在线性规划问题的应用中,常常是题中的条件较多,因此认真审题非常重要; (2)线性约束条件中有无等号要依据条件加以判断; (3)结合实际问题,分析未知数x、y等是否有限制,如x、y为正整数、非负数等; (4)分清线性约束条件和线性目标函数,线性约束条件一般是不等式,而线性目标函数却 是一个等式; (5)图对解决线性规划问题至关重要,关键步 骤基本上都是在图上完成的,所以作图应尽可 能地准确,图上操作尽可能规范但作图中必 然会有误差,假如图上的最优点不容易看出时 ,需将几个有可能是最优点的坐标都求出来, 然后逐一检查,以确定最优解 【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025辅警招聘考试综合提升测试卷含完整答案详解(名校卷)
- 中班社会领域教案《乘坐公共汽车》反思
- 住宅楼基础工程安全管理方案
- 2025年城市污水处理厂深度处理工艺能耗分析与降低策略评估报告
- 2025年教育行业质量评估与认证体系评价标准与方法研究报告
- 2025年机械制造企业服务化转型中的智能制造与工业4.0解决方案报告
- 2025年成人教育终身学习体系构建与平台运营中的教育投资分析报告
- 信访信用治理制度的生成与作用逻辑
- 气球广告公司合伙协议书
- 河南省南阳市宛城区等2地2025-2026学年高二上学期开学考试思想政治试卷(含答案)
- 打扫卫生的社会实践报告
- 小学《道德与法治课程标准2022版》测试题
- 市政污水管道施工组织设计
- 服装陈列课件
- 产品认证控制程序
- 新教材-人教A版高中数学选择性必修第一册-第一章-空间向量与立体几何-知识点及解题方法提炼汇总
- 国家临床版20肿瘤形态学编码(M码)
- 国开电大组织行为学任务四调查报告
- 施工现场安全监理危险源清单一览表
- GB/T 233-2000金属材料顶锻试验方法
- 颈椎DR摄影技术-
评论
0/150
提交评论