【高中数学解题技巧】高中数学分类解题方法精编.doc_第1页
【高中数学解题技巧】高中数学分类解题方法精编.doc_第2页
【高中数学解题技巧】高中数学分类解题方法精编.doc_第3页
【高中数学解题技巧】高中数学分类解题方法精编.doc_第4页
【高中数学解题技巧】高中数学分类解题方法精编.doc_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学分类解题方法精编递推数列特征方程的发现一、问题的提出递推(迭代)是中学数学中一个非常重要的概念和方法,递推数列问题能力要求高,内在联系密切,蕴含着不少精妙的数学思想和方法。在递推数列中占有重要一席的斐波那契数列,又称兔子数列,是学生非常乐意探讨的递推问题,许多学生都会不约而同地向教师提出,这个数列有通项公式吗?如有,怎样求它的通项公式?笔者就曾碰到过一位喜爱钻研的学生,带着参考书上的解法而向我请教:已知斐波那契数列),求通项公式。参考书上的解法是这样的:解 此数列对应特征方程为即,解得, 设此数列的通项公式为,由初始条件可知, ,解之得,所以。这位学生坦率地表示,尽管参考书上介绍了利用特征方程求通项公式的一些结论,用上述方法得到的通项公式也是正确的,但他还是“看不懂”。换句话说,这种解法的依据是什么?特征方程是怎样来的?我虽然深知这是特征方程惹的祸,但由于现行教材只字未提特征方程,我也从未在课堂上作过补充,如果将有关利用特征方程求递推数列通项的一些结论直接呈现出来,或者以“高考不作要求”为由来搪塞,学生是难以接受的,也是不负责任的。面对一头雾水的数学尖子,我在充分肯定其善于思考、勇于探索的可贵品质的同时,也在苦苦寻觅解答这一问题的良策。其后不久,一次偶然的数学探究活动,竟使这一长期困惑我们教学活动的尴尬问题迎刃而解。二、研究与探索问题的解决源于对一阶线性递推数列通项公式的探求:若数列满足其通项公式的求法一般采用如下的参数法,将递推数列转化为等比数列:设 ,令,即,当时可得,知数列是以为公比的等比数列,将代入并整理,得.将上述参数法类比到二阶线性递推数列能得到什么结论?仿上,我们来探求数列的特征:不妨设,则, 令 (1) 若方程组有两组不同的实数解,则, ,即、分别是公比为、的等比数列,由等比数列性质可得, ,由上两式消去可得.(2) 若方程组有两组相等的解,易证此时,则,,即是等差数列,由等差数列性质可知,所以(限于学生知识水平,若方程组有一对共轭虚根的情况略)这样,我们通过参数方法,将递推数列转化为等比(差)数列,从而求得二阶线性递推数列的通项,若将方程组消去即得,显然、就是方程的两根,我们不妨称此方程为二阶线性递推数列的特征方程,于是我们就得到了散见于各种数学参考资料的如下结论:设递推公式为其特征方程为,1、 若方程有两相异根、,则;2、 若方程有两等根,则.其中、可由初始条件确定。这正是特征方程法求递推数列通项公式的根源所在,令,就可求得斐波那契数列的通项,真是“踏破铁蹄无觅处,得来全不费工夫”!将上述方法继续类比到分式线性递推数列(),看看又会有什么发现?仿照前面方法,等式两边同加参数,则 令,即 记此方程的两根为,(1) 若,将分别代入式可得 以上两式相除得,于是得到为等比数列,其公比为,数列的通项可由求得;(2)若,将代入式可得,考虑到上式结构特点,两边取倒数得 由于时方程的两根满足,于是式可变形为为等差数列,其公差为,数列的通项可由求得这样,利用上述方法,我们可以把分式线性递推数列转化为等比数列或等差数列,从而求得其通项。如果我们引入分式线性递推数列()的特征方程为,即,此特征方程的两根恰好是方程两根的相反数,于是我们又有如下结论:分式线性递推数列(),其特征方程为,即,1、若方程有两相异根、,则成等比数列,其公比为;2、若方程有两等根,则成等差数列,其公差为.值得指出的是,上述结论在求相应数列通项公式时固然有用,但将递推数列转化为等比(等差)数列的思想方法更为重要。如对于其它形式的递推数列,我们也可借鉴前面的参数法,求得通项公式,其结论与特征方程法完全一致,有兴趣的读者不妨一试。三、应用举例例1、 已知数列且,求通项公式。解 设, 令 可得于是,即是以为首项、为公差的等差数列,从而.例2、设数列满足. 解: 对等式两端同加参数得令,解之得,代入上式得两式相除得即的等比数列,四、收获与反思 随着普通高中课程改革的逐步深入,要求广大教师在新课标理念指导下,大胆实施课堂教学改革。如何创造性地处理教学内容,无疑是一项十分现实的课题。由于数学知识呈现方式的多样性、解决问题策略的多选择性和数学思维的开放性,教师既要加强学习,不断充实自己的知识结构,做到高屋建瓴而游刃有余,还要不断提高驾驭教材的能力,“用好教材”、“超越教材”而不拘泥于教材,根据学生的实际情况,因材施教,使学生知其然,更知其所以然,帮助学生寻找适合自己的学习方式,“授人以鱼不如授之以渔”,在培养学生学习兴趣的同时激发学生的思维,时时体味“蓦然回首,那人却在灯火阑珊处”的美妙意境。高考数学易错题举例解析高中数学中有许多题目,求解的思路不难,但解题时,对某些特殊情形的讨论,却很容易被忽略。也就是在转化过程中,没有注意转化的等价性,会经常出现错误。本文通过几个例子,剖析致错原因,希望能对同学们的学习有所帮助。加强思维的严密性训练。忽视等价性变形,导致错误。 ,但 与 不等价。【例1】已知f(x) = ax + ,若求的范围。错误解法 由条件得 2 2得 +得 错误分析 采用这种解法,忽视了这样一个事实:作为满足条件的函数,其值是同时受制约的。当取最大(小)值时,不一定取最大(小)值,因而整个解题思路是错误的。正确解法 由题意有, 解得: 把和的范围代入得 在本题中能够检查出解题思路错误,并给出正确解法,就体现了思维具有反思性。只有牢固地掌握基础知识,才能反思性地看问题。忽视隐含条件,导致结果错误。 【例2】(1) 设是方程的两个实根,则的最小值是思路分析 本例只有一个答案正确,设了3个陷阱,很容易上当。利用一元二次方程根与系数的关系易得:有的学生一看到,常受选择答案(A)的诱惑,盲从附和。这正是思维缺乏反思性的体现。如果能以反思性的态度考察各个选择答案的来源和它们之间的区别,就能从中选出正确答案。原方程有两个实根, 当时,的最小值是8;当时,的最小值是18。这时就可以作出正确选择,只有(B)正确。(2) 已知(x+2)2+ =1, 求x2+y2的取值范围。错解 由已知得 y2=4x216x12,因此 x2+y2=3x216x12=3(x+)2+ ,当x=时,x2+y2有最大值,即x2+y2的取值范围是(, 。分析 没有注意x的取值范围要受已知条件的限制,丢掉了最小值。事实上,由于(x+2)2+ =1 (x+2)2=1 1 3x1,从而当x=1时x2+y2有最小值1。x2+y2的取值范围是1, 。注意有界性:偶次方x20,三角函数1sinx1,指数函数ax0,圆锥曲线有界性等。忽视不等式中等号成立的条件,导致结果错误。【例3】已知:a0 , b0 , a+b=1,求(a+ )2+(b+ )2的最小值。错解 (a+)2+(b+)2=a2+b2+42ab+44+4=8,(a+)2+(b+)2的最小值是8.分析 上面的解答中,两次用到了基本不等式a2+b22ab,第一次等号成立的条件是a=b=,第二次等号成立的条件是ab=,显然,这两个条件是不能同时成立的。因此,8不是最小值。事实上,原式= a2+b2+4=( a2+b2)+(+)+4=(a+b)22ab+(+)2+4= (12ab)(1+)+4,由ab()2= 得:12ab1=, 且16,1+17,原式17+4= (当且仅当a=b=时,等号成立),(a + )2 + (b + )2的最小值是。不进行分类讨论,导致错误【例4】(1)已知数列的前项和,求错误解法 错误分析 显然,当时,。错误原因:没有注意公式成立的条件是。因此在运用时,必须检验时的情形。即:。(2)实数为何值时,圆与抛物线有两个公共点。错误解法 将圆与抛物线 联立,消去,得 因为有两个公共点,所以方程有两个相等正根,得 , 解之得错误分析 (如图221;222)显然,当时,圆与抛物线有两个公共点。xyO图222xyO图221要使圆与抛物线有两个交点的充要条件是方程有一正根、一负根;或有两个相等正根。当方程有一正根、一负根时,得解之,得因此,当或时,圆与抛物线有两个公共点。思考题:实数为何值时,圆与抛物线,有一个公共点;(2)有三个公共点;(3)有四个公共点;(4)没有公共点。以偏概全,导致错误以偏概全是指思考不全面,遗漏特殊情况,致使解答不完全,不能给出问题的全部答案,从而表现出思维的不严密性。【例5】(1)设等比数列的全项和为.若,求数列的公比.错误解法 ,。错误分析 在错解中,由,时,应有。在等比数列中,是显然的,但公比q完全可能为1,因此,在解题时应先讨论公比的情况,再在的情况下,对式子进行整理变形。正确解法 若,则有但,即得与题设矛盾,故.又依题意 ,即因为,所以所以解得 说明 此题为1996年全国高考文史类数学试题第(21)题,不少考生的解法同错误解法,根据评分标准而痛失2分。(2)求过点的直线,使它与抛物线仅有一个交点。错误解法 设所求的过点的直线为,则它与抛物线的交点为,消去得整理得 直线与抛物线仅有一个交点,解得所求直线为错误分析 此处解法共有三处错误:第一,设所求直线为时,没有考虑与斜率不存在的情形,实际上就是承认了该直线的斜率是存在的,且不为零,这是不严密的。第二,题中要求直线与抛物线只有一个交点,它包含相交和相切两种情况,而上述解法没有考虑相切的情况,只考虑相交的情况。原因是对于直线与抛物线“相切”和“只有一个交点”的关系理解不透。第三,将直线方程与抛物线方程联立后得一个一元二次方程,要考虑它的判别式,所以它的二次项系数不能为零,即而上述解法没作考虑,表现出思维不严密。正确解法 当所求直线斜率不存在时,即直线垂直轴,因为过点,所以即轴,它正好与抛物线相切。当所求直线斜率为零时,直线为y = 1平行轴,它正好与抛物线只有一个交点。一般地,设所求的过点的直线为,则,令解得k = ,所求直线为综上,满足条件的直线为:章节易错训练题1、已知集合M = 直线 ,N = 圆 ,则MN中元素个数是 A(集合元素的确定性)(A) 0 (B) 0或1 (C) 0或2(D) 0或1或22、已知A = ,若AR* = F ,则实数t集合T = _。(空集)3、如果kx2+2kx(k+2)0恒成立,则实数k的取值范围是C(等号)(A) 1k0 (B) 1k0 (C) 1k0 (D) 1k04、命题3,命题0,若A是B的充分不必要条件,则的取值范围是C(等号)(A) (B) (C) (D)5、若不等式x2logax0在(0, )内恒成立,则实数的取值范围是A(等号)(A) ,1) (B) (1, + )(C) (,1)(D) (,1)(1,2)6、若不等式(1)na 2 +对于任意正整数n恒成立,则实数的取值范围是A(等号)(A) 2,)(B) (2,)(C) 3,)(D) (3,)7、已知定义在实数集上的函数满足:;当时,;对于任意的实数、都有。证明:为奇函数。(特殊与一般关系)8、已知函数f(x) = ,则函数的单调区间是_。递减区间(,1)和(1, +)(单调性、单调区间)9、函数y = 的单调递增区间是_。,1)(定义域)10、已知函数f (x)= , f (x)的反函数f 1(x)=。 (漏反函数定义域即原函数值域)11、函数 f (x) = log (x 2 + a x + 2) 值域为 R,则实数 a 的取值范围是D(正确使用0和0 , b0 , a+b=1,则(a + )2 + (b + )2的最小值是_。(三相等)22、已知x kp (k Z),函数y = sin2x + 的最小值是_。5(三相等)23、求的最小值。错解1 错解2 错误分析 在解法1中,的充要条件是即这是自相矛盾的。在解法2中,的充要条件是这是不可能的。正确解法1 其中,当正 确 解 法2 取正常数,易得其中“”取“”的充要条件是因此,当24、已知a1 = 1,an = an1 + 2n1(n2),则an = _。2n1(认清项数)25、已知 9、a1、a2、1 四个实数成等差数列,9、b1、b2、b3、1 五个实数成等比数列,则 b2 (a2a1) = A(符号)(A) 8 (B) 8(C) (D) 26、已知 an 是等比数列,Sn是其前n项和,判断Sk,S2kSk,S3kS2k成等比数列吗?当q = 1,k为偶数时,Sk = 0,则Sk,S2kSk,S3kS2k不成等比数列;当q1或q = 1且k为奇数时,则Sk,S2kSk,S3kS2k成等比数列。(忽视公比q = 1)27、已知定义在R上的函数和数列满足下列条件: ,f(an)f(an1) = k(anan1)(n = 2,3,),其中a为常数,k为非零常数。(1)令,证明数列是等比数列;(2)求数列的通项公式;(3)当时,求。(2004天津)(等比数列中的0和1,正确分类讨论)28、不等式m2(m23m)i,误认短轴是b = 2;要分析直线PQ斜率是否存在(有时也可以设为x = ky + b)先;对一元二次方程要先看二次项系数为0否,再考虑0,后韦达定理。)41、 已知双曲线的右准线为,右焦点,离心率,求双曲线方程。错解1 故所求的双曲线方程为错解2 由焦点知故所求的双曲线方程为错解分析 这两个解法都是误认为双曲线的中心在原点,而题中并没有告诉中心在原点这个条件。由于判断错误,而造成解法错误。随意增加、遗漏题设条件,都会产生错误解法。正解1 设为双曲线上任意一点,因为双曲线的右准线为,右焦点,离心率,由双曲线的定义知 整理得 正解2 依题意,设双曲线的中心为,PC(3,0)yxO图321 MN则 解得 ,所以 故所求双曲线方程为 42、求与轴相切于右侧,并与也相切的圆的圆心的轨迹方程。错误解法 如图321所示,已知C的方程为设点为所求轨迹上任意一点,并且P与轴相切于M点,与C相切于N点。根据已知条件得,即,化简得错误分析 本题只考虑了所求轨迹的纯粹性(即所求的轨迹上的点都满足条件),而没有考虑所求轨迹的完备性(即满足条件的点都在所求的轨迹上)。事实上,符合题目条件的点的坐标并不都满足所求的方程。从动圆与已知圆内切,可以发现以轴正半轴上任一点为圆心,此点到原点的距离为半径(不等于3)的圆也符合条件,所以也是所求的方程。即动圆圆心的轨迹方程是y2 = 12x(x0)和。因此,在求轨迹时,一定要完整的、细致地、周密地分析问题,这样,才能保证所求轨迹的纯粹性和完备性。O图32243、(如图322),具有公共轴的两个直角坐标平面和所成的二面角等于.已知内的曲线的方程是,求曲线在内的射影的曲线方程。错误解法 依题意,可知曲线是抛物线,在内的焦点坐标是因为二面角等于,且所以设焦点在内的射影是,那么,位于轴上,从而所以所以点是所求射影的焦点。依题意,射影是一条抛物线,开口向右,顶点在原点。所以曲线在内的射影的曲线方程是错误分析 上述解答错误的主要原因是,凭直观误认为F是射影(曲线)的焦点,其次,没有证明默认C/在a 内的射影(曲线)是一条抛物线。O图323MNH正确解法 在内,设点是曲线上任意一点(如图323)过点作,垂足为,过作轴,垂足为连接,则轴。所以是二面角的平面角,依题意,.在又知轴(或与重合),轴(或与重合),设,则 因为点在曲线上,所以即所求射影的方程为 44、设椭圆的中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的最远距离是,求这个椭圆的方程。错误解法 依题意可设椭圆方程为则 ,所以 ,即 设椭圆上的点到点的距离为,则 所以当时,有最大值,从而也有最大值。所以 ,由此解得:于是所求椭圆的方程为错解分析 尽管上面解法的最后结果是正确的,但这种解法却是错误的。结果正确只是碰巧而已。由当时,有最大值,这步推理是错误的,没有考虑到的取值范围。事实上,由于点在椭圆上,所以有,因此在求的最大值时,应分类讨论。即:若,则当时,(从而)有最大值。于是从而解得所以必有,此时当时,(从而)有最大值,所以,解得于是所求椭圆的方程为数学推理是由已知的数学命题得出新命题的基本思维形式,它是数学求解的核心。以已知的真实数学命题,即定义、公理、定理、性质等为依据,选择恰当的解题方法,达到解题目标,得出结论的一系列推理过程。在推理过程中,必须注意所使用的命题之间的相互关系(充分性、必要性、充要性等),做到思考缜密、推理严密。数学解题错误的定性分析【摘要】 正确对待学生的解题错误,所有教师都责无旁贷,又大有所为,因为它是提高学生素质的绝好途径,同时也从一定程序上反映教师的数学素养。本人从它的特性,生成因素,以及对应策略三方面,并结合实际题例,进行简单的定性分析。【关键词】特性知识性 心理性 策略性实质自我效能感检验一解题错误特性一般而言,解题错误就是教学活动中的一种表现,它既受到教学环境与习题本生的制约,又和不同的水平的学生有关。它有自己的特性,这些特性是由数学的特点以及数学活动中的方法所决定的。11 概括性大量的数学习题是客观世界的数量关系和理想化了的空间形式,具有概括性,并且越来越多的高考试题是平时习题的多得概括,这也是其中的错误包括了从要领到通法到知识的迁移比如立体几何中的垂直性分为线线垂直,线面垂直,面面垂直延伸到所成角,又有线线所成角,线面所成角,二面角等等,学生往往在要领的概括上,通法的归纳上,知识的迁移应用上,都会表现出一些错误。12 隐蔽性数学习题除了形式化的“外表语言”文字,图象,符号,还包含着一些本质的东西思维,即使有了正确的方法。有时还会犯一些思维上的错误,这常让学生有时会“自以为是”。【例1】在ABC中,,求?错解:当A为锐角时,则当A为钝角时,则。实际上,A为钝角是不可能的,如果A为钝角,A135又因为B60,产生矛盾!13 可鉴性承认学生解题错误的存在是符合实际的,所谓“吃一堑长一智”,所以适当的错误会给人“顿悟”,从而使学习能健康的得以继续。另外,(1)他能给教师检查教学方案的执行情况,及时调整并重新控制目标,让教学更有针对性(2)它是学生提高自我纠正能力的前导,剑桥心理学家巴特说过:“测定智力的唯一标准是检测并屏弃错误的速度”当学生从解题错误中意识到自己的知识和思维缺陷是,也会自学地实行控制,灵活运用各种方法技能进行重操作。(3)它也是教学研究者的主要数据来源,据90年的一份高考调查,浙江考生在立体几何的错误率达28%,经过教学上的调整,这一薄弱环节近几年得到不少改变。14 多样性由于数学解题错误其终端表现必须是反映在知识上,因此不少人都把他们看成是知识性的,用知识去囊括一切,我们认为学生的认知结构可分 知识结构和认知结构,除了知识性错误,还有逻辑性错误,心理性错误,策略性的错误。二错误生成因素许多老师、包括数学教育家弗洛依滕泰尔也曾生学的一些类似于“”的错误,归咎于他们的“不专心”,我们老师讲了又讲,但效果甚微,为什么呢?实质上,这里有许多不同的生成因素。21 知识掌握上的不完善这方面的表现主要有:(1)概念,性质含糊不清,比如“公垂线”的概念,许多学生,只记忆其垂直关系,而忽略了“唯一性”(2)忽略公式和重要结构存在的条件【例2】求函数的值域?错解:由基本不等式得,值域是2,)。正解:当x0时,;当x0时,【例3】设数列,前n项的和,求数列的通项?错解:由即为所求。上述错误原因在于忽略式子“”对成立。(3)思维定势的滋生【例4】已知定点A(0,1),B(2,3),若抛物线与线段AB有两个交点,求K?解该题时,不少学生忽略“线段”,而凭瞬间直觉默认是“直线”,从而使K的范围扩大化。22 逻辑性的不合理性从本质上说,逻辑也属于知识范畴,但有时导致错误的盲点是在于逻辑,而不在于数学,其有以下几种表现:潜在假设,所谓潜在假设,就是还没经过讨论论证的,就总认为正确的必然的那种想法例如“圆锥的轴截面再过顶点的所有截面中面积最大”,这个问题如果没经过证明都很难判断其正确性。这一点,在立体几何的证明题中常出现“偷梁换柱”对参数的分类不当非等价变换“循环论证”因果关系不明。【例5】函数,的值域是()A0,1 B1,1 C D(浙江2002年会考试题)错解:C分析:学生误以为最值在定义域的端点取得,这属于潜在假设,想当然。例:如图,在三棱锥SABC中,ACBCa,SCb,ACB120ACSBCS90,求二面角SAB的正切值。错解:过S作AB的垂线,连结CD;SCAC,SCBC,由三垂线定理知CDAB则SDC即为二面角S-AB-C;在BCD中,CBD30,;在SCD中,分析:因果关系不明在解题中比较普遍,尤其在论证题中。上题主要有下面向几点不清楚:垂足没指明先证SC平面ABC二面角与平面角是两个不同概念CBD30成立的理由不足求之前,应证明SCD是Rt23心理性的错误数学习题的解答,除了依靠学生的知识技能之外,还和本身的心理能力和智力分不开,即使知识技能掌握的不错,也可能因为心理障碍而产生错误,甚至一筹莫展,一些同学对立体几何就存在心理障碍。那么,高中阶段的学生心理表现为两方面:(1)能力的缺乏,这里我们说的心理能力包括识别能力,记忆能力,信息加工能力,想象能力,比如类似于的交错图形,对于感知能力较差的学生会产生消极影响。而人的记忆就象一个能改变容量的库,随着年龄而发生变化,我们发现当一个习题的数据较多的时候,学生往往表现的“顾此失彼”。(2)没有正确的心理势态,一方面和谐漂亮的量的关系,学生容易接近,反之,学生会产生心理抗拒。如换底公式,因为型美而容易记住,但有时却犯下如“”的错误。(3)还停留在旧知识结构中,大家知道,随着每天的学习,旧的知识结构应不断被打破,但由于思维的惰性必然出现不同程度的停留,也会导致错误。比如高一学习一元二次方程在实数范围内,当学习了复数后,应作具体分类考虑。(4)缺乏“整体观念”【例6】函数的值域是_。分析:如果把和看成两个独立的元素,显然不好入手。但如果把和整体对待,就容易联想到用换元法来解决本题。24 策略性错误策略性错误是指解题思路阻塞或一种策略产生错误导向,或指一种策略明显增加了过程的难度和复杂性,由于时间的限制,问题最终得不到解决。主要有:方法不当,不能正确转化问题或运用模式。【例7】已知,求的值?繁解:,或当,原式当,同理可得原式1。优解:原式这里,我建议同学们要克服浏览题目后就埋头计算而不审题的作风。三对应策略解决数学习题尤其是对待错误,不能单纯依靠固定模式,首先应制定策略。31减少机械性重复训练,注重培养学生既开放又严谨的思维品质没错,对知识的掌握,唯一的途径是非训练莫属,错对“讲的多练的少”的现象,我们应反其道而行之,要讲精练多,通过练习暴露学生的各种错误,便在纠正中衍生一些知识点,减少负担,又能激发他们的求知欲。【例8】直线L通过抛物线的焦点,并且与这条抛物线交于A(,)B(,)两点,(1)证:(2)若点C在准线上,且AC平行与X轴,问B点,C点,D点共线吗?本题改自平面解析几何P99T7和T9,在一个题境中解两个问题,比原题显的有层次,更能培养学生的思维。32突出重点,抓住实质的教与学有些学生在解题时,只对形式的肤浅认识,而不推究实质和条件,搬用旧有的解题模式。【例9】已知,求?本题如果只针对根号作一些变形,最后可能因为“复杂”而不得不放弃,如果抓住方程的实质,由,则故原式即即x20022003。多简单的解法!我们认为课堂中的教学应体现两个字:精,详。精出重点,详在实质一节课下来,让学生明白这节课的学习目标是什么,久而久之,他们解题时就能够“胸有成竹”。33在教学中渗透德育,尤其是培养学生的自我效能感自我效能感引字美国心理学家班杜拉的自我效能理论,他认为,人们在对自己能够进行某一行为的实施能力的推测或判断在调节人的行为上具有更重要的作用,对自己实施能力的推测或判断就是自我效能感。学生能主动支纠正解题错误,勇于战胜困难,而且自我调控自我完善的能力较强,正是自我效能感的一种表现。我们常常只关心终端的考核结果,或对解题错误置之不理,或故设屏障是他们产生畏难情绪。古人云,授之鱼不如授之以渔,我们认为让学生自我培养纠正能力也很重要。一方面在习题中让全体学生参与知识,方法的产生,发展过程,从而不断获取“意外”的经验;另外,让学生有更多的表现机会和被批评被表扬的机会,使学生错之有得,分层推进;第三,教师的模范解题,能使学生得到良好素养的熏陶,促进他们心理的同步健康发展高中数学通用模型解题方法 上海市华师大二附中 特级数学教师:张杰1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A=-1,3.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。3. 注意下列性质: 要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,an,都有2种选择,所以,总共有种选择, 即集合A有个子集。当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程 的2个根5、熟悉命题的几种形式、 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。6、熟悉充要条件的性质(高考经常考) 满足条件,满足条件,若 ;则是的充分非必要条件;若 ;则是的必要非充分条件;若 ;则是的充要条件;若 ;则是的既非充分又非必要条件; 7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。函数的图象与直线交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法:l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 指数式的底数大于零且不等于一;l 对数式的底数大于零且不等于一,真数大于零。l 正切函数 l 余切函数 l 反三角函数的定义域函数yarcsinx的定义域是 1, 1 ,值域是,函数yarccosx的定义域是 1, 1 ,值域是 0, ,函数yarctgx的定义域是 R ,值域是.,函数yarcctgx的定义域是 R ,值域是 (0, ) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。10. 如何求复合函数的定义域? 义域是_。 复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例 若函数的定义域为,则的定义域为 。分析:由函数的定义域为可知:;所以中有。解:依题意知: 解之,得 的定义域为11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域2、配方法配方法是求二次函数值域最基本的方法之一。例、求函数y=-2x+5,x-1,2的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容例求函数y=(2x10)的值域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上, 例求函数y=+的值域。解:原函数可化简得:y=x-2+x+8 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=x-2+x+8=AB=10当点P在线段AB的延长线或反向延长线上时,y=x-2+x+8AB=10故所求函数的值域为:10,+)例求函数y=+ 的值域解:原函数可变形为:y=+ 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时, y=AB=,故所求函数的值域为,+)。例求函数y=-的值域解:将函数变形为:y=-上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=AP-BP由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P,则构成ABP,根据三角形两边之差小于第三边,有 AP-BPAB= 即:-y(2)当点P恰好为直线AB与x轴的交点时,有 AP-BP=AB= 。综上所述,可知函数的值域为:(-,-)。注:求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧。9 、不等式法利用基本不等式a+b2,a+b+c3(a,b,c),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例 求函数y=的值域多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂 13. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (反解x;互换x、y;注明定义域) 在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:(2004.全国理)函数的反函数是( B )Ay=x22x+2(x1)By=x22x+2(x1)Cy=x22x (x=1. 排除选项C,D.现在看值域。原函数至于为y=1,则反函数定义域为x=1, 答案为B.我题目已经做完了, 好像没有动笔(除非你拿来写*书)。思路能不能明白呢?14. 反函数的性质有哪些? 反函数性质:1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x对应原函数中的y)2、 反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)3、 反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称 互为反函数的图象关于直线yx对称; 保存了原来函数的单调性、奇函数性; 由反函数的性质,可以快速的解出很多比较麻烦的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论