已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Multi-layer Perceptrons Junying Zhang contents structure universal theorem MLP for classification mechanism of MLP for classification nonlinear mapping binary coding of the areas MLP for regression learning algorithm of the MLP back propagation learning algorithm heuristics in learning process XOR and Linear Separability Revisited Remember that it is not possible to find weights that enable Single Layer Perceptrons to deal with non-linearly separable problems like XOR: However, Multi-Layer Perceptrons (MLPs) are able to cope with non-linearly separable problems. Historically, the problem was that there were no learning algorithms for training MLPs. Actually, it is now quite straightforward. Structure of an MLP it is composed of several layers neurons within each layer are not connected ith layer is only fully connected to the (i+1)jth layer Signal is transmitted only in a feedforward manner Structure of an MLP Model of each neuron in the net includes A nonlinear activation function the net is nonlinear The function is smooth derivative Generally, sigmoidal function The network contains one or more layers of hidden neurons that are not part of input or output of the net enable the net to learn complex tasks Expressive power of an MLP Questions How many hidden layers are needed? How many units should be in a (the) hidden layer? Answers Komogorovs mapping neural network existence theorem (universal theorem) Komogorovs mapping neural network existence theorem (universal theorem) Any continuous function g(x) defined on the unit hypercube can be represented in the from For properly chosen functions and It is impractical the functions and are not the simple weighted sums passed through nonlinearities favored in neural networks It tells us very little about how to find the nonlinear functions based on data the central problem in network based pattern recognition those functions can be extremely complex; they are not smooth Komogorovs mapping neural network existence theorem (universal theorem) Any continuous function g(x) can be approximated to arbitrary precision by for properly chosen function f(.) when NH approaches to infinity. MLP for classification MLP for regression Learning scheme Supervised learning Two propagation directions - Function Signal: in forward direction - Error signal: in backward direction Learning in MLP Objective function where The desired output of the jth output neuron The real output of the jth output neuron Sum squared error function Steepest descent search method Partial derivative extension Learning rate parameter Synaptic weight from ith neuron in k-1th layer to the jth neuron in kth layer of the network Situation for Situation for Back propagation learning algorithm of MLP Updating equation where which is Back propagation formula For sigmoidal function f(.) we have Speeding the learning process Learning rate parameter Momentum constant parameter Heuristics for making the back-propagation algorithm perform better Sequential versus batch update Comparison, sequential model is Computationally faster More suitable for large and highly redundant training data set Makes the search in weight space stochastic in nature Less likely to be trapped in a local minimum More difficult to establish theoretical conditions for convergence of the algorithm Stopping criteria the back-propagation algorithm is considered to have converged gradient vector when the Euclidean norm of the gradient vector reaches a sufficiently small gradient threshold Squired error When the absolute rate of change in the average squared error per epoch is sufficiently small Generalization When generalization performance reaches a peak Generalization performance Overfitting downfitting generalization performance Cross-validation Leave-one-out Practical Considerations for Back-Propagation Learning How Many Hidden Units? Different Learning Rates for Different Layers? Overview We started by revisiting the concept of linear separability and the need for multi-layered neural networks We then saw how the Back-Prop
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国农业银行研发中心校园招聘备考题库(215人)及答案详解(名师系列)
- 2026届云南省玉溪一中高三上学期适应性测试(六)地理试题及答案
- 机械加工工艺优化与夹具设计研究
- 医院推拿按摩科人员职业素养
- 糖尿病中医理疗康复经验
- 2025 初中语文八年级上册散文线索提炼课件
- 护士基本护理礼仪
- 跨学科医疗创新与协同发展
- 移动医疗平台的建设与推广
- 胃肠病诊断与治疗新进展
- 2026年山西省财政税务专科学校单招职业倾向性测试题库附答案
- 2025年天车工(初级)考试试卷及模拟题库及答案
- 接地电阻测量方法培训课件
- 2025-2030中国智能舞台灯光行业市场现状需求分析及投资策略规划研究报告
- 2025四川遂宁投资集团有限公司市场化招聘8人备考题库及答案详解(各地真题)
- 快速提升金融面试能力的策略
- 2025年货币银行学真题试卷含答案
- 糖尿病足溃疡创面氧疗与局部微环境改善方案
- 混凝土检查井施工专项方案设计
- 消化系统大肠解剖课件
- 2024年网络与信息安全管理员职业技能等级认定考试(含答案解析)
评论
0/150
提交评论