




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.3 定积分 要点梳理 1.用化归法计算矩形面积和逼近的思想方法求出曲边 梯形的面积的具体步骤为 、 、 、 . 分割 近似代替 求和 取极限 基础知识 自主学习 2.定积分的定义 如果函数f(x)在区间a,b上连续,用分点将区 间a,b等分成n个小区间,在每个小区间上任取 一点i(i=1,2,n),作和式 .当n 时,上述和式无限接近于某个常数,这个常数叫做 函数f(x)在区间a,b上的定积分,记作 , 即 = ,其中f(x)称为 , x称为 ,f(x)dx称为 , a,b为 ,a为 ,b为 ,“ ”称 为积分号. 被积函数 积分变量被积式 积分区间积分下限积分上限 3. 的实质 (1)当f(x)在区间a,b上大于0时, 表示 由 ,这也是定积分的几何意义. (2)当f(x)在区间a,b上小于0时, 表示 . (3)当f(x)在区间a,b上有正有负时, 表 示介于x=a,x=b (ab)之间x轴之上、下相应的曲 边梯形的面积的代数和. 直线x=a,x=b(ab),y=0和曲线y=f(x)所围成 的曲边梯形的面积 由直线x=a,x=b (ab),y=0和曲线y=f(x)所围成的 曲边梯形的面积的相反数 4.定积分的运算性质 (1) = . (2) = . (3) = . 5.微积分基本定理 一般地,如果f(x)是区间a,b上的连续函数 ,并且F(x)=f(x),那么 . 这个结论叫做微积分基本定理,又叫做牛顿莱 布尼兹公式.可以把F(b)-F(a)记为F(x) .即 (a c b) 6.利用牛顿莱布尼兹公式求定积分的关键是 ,可将基本初等函数的导数公式逆 向使用. 7.定积分的简单应用 (1)求曲边梯形的面积 (2)匀变速运动的路程公式 做变速直线运动的物体所经过的路程s,等于其速 度函数v=v(t) (v(t)0)在时间区间a,b上的 定积分,即s= . 求被 积函数的原函数 (3)变力作功公式 一物体在变力F(x)(单位:N)的作用下做直线 运动,如果物体沿着与F相同的方向从x=a移动到 x=b (ab)(单位:m),则力F所作的功为W= . 基础础自测测 1. sin xdx等于() A.0B.2C.D.2 解析 =-cos-(-cos 0)=1+1=2. D x2(x0) 2x(x0),则 f(x)dx的值是() A. x2dxB. 2xdx C.x2dx+ 2xdxD. 2xdx+ x2dx 解析 由分段函数的定义及积分运算的性质知: D 2.设f(x)= 3.如图所示,函数y=-x2+2x+1与y=1相交形成一个闭 合图形(图中的阴影部分),则该闭合图形的面积 是() A.1B. C. D.2 y=-x2+2x+1 y=1, S= (-x2+2x+1-1)dx= (-x2+2x)dx B 由 解析 得x1=0,x2=2. 4.曲线y=cos x(0x )与坐标轴所围成的面积 是() A.2B.3 C. D.4 解析 如图所示, B 5.有一质量非均匀分布的细棒,已知其线密度为 (x)=x3(取细棒的一端为原点,所在直线为x 轴),棒长为1,则棒的质量M为 ( ) A.1B. C. D. 解析 D 题型一 利用微积分基本定理求定积分 【例1】(1)(x2+2x+1) dx;(2) (sin x-cos x) dx; (3)(x-x2+ )dx;(4) (cos x+ex) dx. 先由定积分的性质将其分解成各个简单 函数的定积分,再利用微积分基本定理求解. 解 (1) (x2+2x+1) dx =x2dx+ 2xdx+ 1dx = 思维启迪 题型分类 深度剖析 探究提高 计算一些简单的定积分,解题的步骤是 :(1)把被积函数变形为幂函数、正弦函数、余 弦函数、指数函数与常数的和或差;(2)把定积 分用定积分性质变形为求被积函数为上述函数的定 积分;(3)分别用求导公式找到一个相应的原函 数;(4)利用牛顿莱布尼兹公式求出各个定 积分的值;(5)计算原始定积分的值. 计算 f(x)dx的关键是找到满足F(x)=f(x)的函数F (x).其中F(x)可将基本初等函数的导数公式逆 向使用得到. 知能迁移1 求下列函数的定积分. (1) (4x3+3x2-x)dx; (2) (e2x+ )dx; (3) sin2 dx. 解(1) (4x3+3x2-x) dx = (4x3)dx+ (3x2) dx- xdx = =(24-0)+(23-0)- (22-0) =16+8-2=22. 题型二 求分段函数的定积分 【例2】计算下列定积分. (1)|sin x|dx;(2) |x2-1|dx. 对于第(1)小题,应对在区间0,2 上的正、负进行分情况计算;而对于第(2)小 题,在0x2的条件下,对x2-1的正、负情况进行 讨论. 解 (1)(-cos x)=sin x, |sin x|dx= |sin x|dx+ |sin x|dx =-(cos -cos 0)+(cos 2-cos )=4. 思维启迪 x2-1(1x2) 1-x2(0x1) |x2-1|dx= (1-x2)dx+ (x2-1)dx (2)0x2,于是|x2-1|= 当被积函数含有绝对值(或平方根)时 ,须按绝对值内的正、负号将定积分区间分段,然 后按区间的可加性逐段积分;同样,当被积函数为 分段函数时,也须按函数的定义的分段情形相应的 逐段积分. 探究提高 x3(0x1) (1x4), 2x-14 (4x5) 在区间0,5上的定积分; (2)求 |3-2x|dx; (3)求 知能迁移2 (1)求函数f(x)= 解 (1)由定积分性质知 (3)当x0, 时, =|sin x-cos x| -sin x+cos x (0x ) sin x-cos x ( x ) = , 题型三 求曲边梯形的面积 【例3】求由抛物线y=x2-1,直线x=2,y=0所围成的图 形的面积. 画出图象求出抛物线与x轴交点 用定积分求面积. 解 作出直线x=2,曲线y=x2-1 的草图,所求面积为图中阴影 部分的面积. 由x2-1=0得抛物线与x轴的 交点坐标是(-1,0)和(1,0), 因此所求图形的面积为 思维启迪 S= |x2-1|dx+ (x2-1)dx =(1-x2)dx+ (x2-1)dx 对于求平面图形的面积问题,应首先画 出平面图形的大概图形,然后根据图形特点,选择相 应的积分变量及被积函数,并确定被积区间. 探究提高 知能迁移3 求抛物线y2=2x与直线y=4-x围成的平面 图形的面积. y2=2x y=4-x (2,2)及(8,-4). 方法一 选x作为积分变量,由图可看出S=A1+A2 在A1部分:由于抛物线的上半支方程为y= , 下半支方程为y= ,所以 解 由方程组 解出抛物线和直线的交点为 方法二 选y作积分变量, 将曲线方程写为x= 及x=4-y. 题型四 定积分在物理中的应用 【例4】(12分)一辆汽车的速度时间曲线如图所示 ,求此汽车在这1 min内所行驶的路程. 由题意知,在t0,10)和t40 ,60)物体作匀变速直线运动,t10,40)作 匀速运动,v(t)应为分段函数,应分三段求积 分. 思维启迪 解 由速度时间曲线易知, 3t, t0,10) 30, t10,40) -1.5t+90, t40,60 4 分 由变速直线运动的路程公式可得 v(t)= 8分 11分 答 此汽车在这1 min内所行驶的路程是1 350 m.12分 探究提高 用定积分解决变速运动的位置与路程问 题时,将物理问题转化为数学问题是关键.变速直 线运动的速度函数往往是分段函数,故求积分时要 利用积分的性质将其分成几段积分,然后求出积分 的和,即可得到答案,由于函数是分段函数,所以 运算过程可能稍微复杂些,因此在运算过程中一定 要细心,不要出现计算上的错误. 知能迁移4 一物体按规律x=bt3做直线运动,式中x为 时间t内通过的距离,媒质的阻力与速度的平方成正 比,试求物体由x=0运动到x=a时,阻力做的功. 解 物体的速度v=x(t)=(bt3)=3bt2, 媒质阻力f阻=kv2=k(3bt2)2=9kb2t4. (其中k为比例常数,k0) 当x=0时,t=0,当x=a时,t=t1= , 阻力做的功是: W阻=f阻dx= kv2vdt = v3dt= (3bt2)3dt= kb3t 方法与技巧 1.求定积分的方法 (1)利用定义求定积分(定义法),可操作性不强 . (2)利用微积分基本定理求定积分步骤如下: 求被积函数f(x)的一个原函数F(x); 计算F(b)-F(a). (3)利用定积分的几何意义求定积分 当曲边梯形面积易求时,可通过求曲边梯形的面积 求定积分. 如:定积分 dx的几何意义是求单位圆面积 的 ,所以 思想方法 感悟提高 2.求曲边多边形的面积 其步骤为: (1)画出草图,在直角坐标系中画出曲线或直线的 大致图象. (2)借助图形确定被积函数,求出交点坐标,确定 积分的上限、下限. (3)将曲边梯形的面积表示为若干定积分之和. (4)计算定积分. 失误误与防范 1.被积函数若含有绝对值号,应去绝对值号,再分段 积分. 2.若积分式子中有几个不同的参数,则必须先分清谁 是被积变量. 3.定积分式子中隐含的条件是积分上限不小于积分下 限. 4.定积分的几何意义是曲边梯形的面积,但要注意: 面积非负,而定积分的结果可以为负. 5.将要求面积的图形进行科学而准确的划分,可使面 积的求解变得简捷. 一、选择题 1. (sin x+cos x)dx的值是() A.0B. C.2D.4 C 解析 定时检测 2.若函数f(a)= (2+sin x)dx, 则f(f( )等 于 () A.1B.0 C.2+3+cos 1D.1-cos 1 解析 f(a)= (2+sin x)dx =(2x-cos x)| =2a-cos a+1, f( )=+1, f(f( )=f(+1)=2(+1)-cos(+1)+1 =2+cos 1+3. C 3.若 (2x-3x2)dx=0,则k等于 () A.0B.1 C.0或1D.以上均不对 解析 (2x-3x2)dx= 2xdx- 3x2dx =k2-k3=0,k=0或k=1. C x2, x0,1, 2-x,x(1,2, 4.设f(x)= f(x)dx等于() A. B. C. D.不存在 解析 本题应画图求解,更为清晰, f(x)dx= x2dx+ (2-x)dx 则 C 5.曲线y=cos x(0x )与坐标轴围成的面积是 () A.4B. C.3D.2 解析 先作出y=cos x(0x )的图象,从图象 中可以看出 C 6.一物体在变力F(x)=5-x2(力单位:N,位移单 位:m)作用下,沿与F(x)成30方向作直线运 动,则由x=1运动到x=2时F(x)作的功为() A. JB. JC. JD.2 J 解析 由于F(x)与位移方向成30角.如图:F在 位移方向上的分力F=Fcos 30, C 二、填空题 7. (1+cos x)dx= . 解析 (x+sin x)=1+cos x, (1+cos x)dx=(x+sin x) +2 8. (2xk+1)dx=2,则k= . 解析 9.(2008山东理,14)设函数f(x)=ax2+c (a0),若 f(x)dx=f(x0),0x01,则x0的值为 . 解析 (ax2+c)dx= a0, ,又0x01,x0= . 1 三、解答题 10.计算下列定积分 (1) (2) (3) 解 (1) (3) 11.已知f(x)为二次函数,且f(-1)=2,f(0)=0, f(x)dx=-2. (1)求f(x)的解析式; (2)求f(x)在-1,1上的最大值与最小值. 解 (1)设f(x)=ax2+bx+c (a0), 则f(x)=2ax+b. a-b+c=2 c=2-a b=0 b=0 f(x)=ax2+(2-a). 由f(-1)=2,f(0)=0,得 即,. 又 f(x)dx= ax2+(2-a)dx = ax3+(2-a)x| =2- a=-2. a=6,c=-4.从而f(x)=6x2-4. (2)f(x)=6x2-4,x-1,1, 所以当x=0时,f(x)min=-4;当x=1时,f(x)max=2. 12.如图所示,抛物线y=4-x2与直线y=3x的两交点为A 、 B,点P在抛物线上从A向B运动. (1)求使PAB的面积最大的P点的 坐标(a,b); (2)证明由抛物线与线段AB围成的 图形,被直线x=a分为面积相等的 两部分. y=4-x2 y=3x, 抛物线y=4-x2与直线y=3x的交点为 A(1,3),B(-4,-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售服务授权合同范本
- 工业厂房物业合同范本
- 土地承租搭建合同范本
- 啤酒酒水供应合同范本
- 卖房合同范本200字
- 购买虾苗合同范本
- 矿山原料购销合同范本
- 2025年自动化驾驶面试题及答案
- 2025年控制技能考试题库及答案
- 2025年人工智能辅助设计软件定制开发及全球授权合同
- 高二下学期期末化学试卷及答案解析
- 外周前庭系统解剖生理及原则课件
- 《明史海瑞传》阅读练习及答案(2020年全国新高考II卷高考题)
- 《喜欢你》粤语谐音发音歌词邓紫棋
- 初中语文学习方法指导课件
- 民航概论-完整版ppt课件最全课件整本书电子教案最新教学教程
- 烹饪实用英语(第三版)全套课件完整版电子教案最新板
- 市场营销基础第5版电子教案课件
- 钻井作业现场常见安全风险及隐患ppt课件
- 葫芦烙画教学校本课程
- 沙盘规则介绍(课堂PPT)
评论
0/150
提交评论