




已阅读5页,还剩54页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 动量守恒定律和能量守恒定律 3-1 质点和质点系的动量定理 考虑力的时间积累效应由牛 质点受合外力的冲量等于同一时间内该质点动量的增量 力的时间积累 力的冲量: 质点的动量定理: 冲量 动量定理微分形式 动量定理积分形式 可以看出动量定理是牛顿第二定律变形 一 冲量 质点的动量定理 冲击力下 称为时间内的平均力 动量定理的表达式是矢量式 分量式 F 0 t t0 t 逆风行船 与水的阻力相平衡 为船的动力 若干质点组成体系: 第 i个质点受力 将体系分为两部分, 一部分称为系统, 另一部分叫外部环境或外界。 这时第 i 个质点受力: 利用牛顿第三定律 系统内力之和 (设有m+n个) 内部n个 外部m个 二 质点系的动量定理 将子系统看成整体,总动量 它受到的合力 所以 这就是质点系的牛顿第二定律 -系统受到的合外力等 于系统动量对时间的变化率 系统只有一个质点时为中学所学形式: 质点系的动量定理 内力能使系统内各个质点的动量发生改变(相互交换动量), 但它们对系统的总动量没有任何影响。 当系统所受的合外力为 0, 即 或 常矢量 当一个质点系受的合外力为零时,该系统总动量 保持不变。 3-2 动量守恒定律 动量守恒定律 分量式: 当则恒量 即 恒量 即 恒量 则恒量 即恒量 则恒量 讨论 1. 当某一方向外力为零时该方向动量守恒 2. 当内力 外力时,动量守恒 当 当 常矢量 动量守恒矢量式 3. 相对同一惯性系使用动量守恒定律 3-3 系统内质量移动问题 t 时刻: 火箭+燃料=M 它们对地的速度为 (1) 经 dt 时间后 ,质量为 dm 的燃料喷出 剩下质量为对地速度为 (2) 称为喷气速度 选地面作参照系,忽略外力 选正向 (喷出燃料相对火箭速度) 动量守恒 火箭点火质量为 M0 初速度 末速度为末质量为 M , 则有 dm: 火箭推力 动量守恒 如果系统外力不为0 2. 这对燃料的携带来说不合适,用多级火箭可避免这一困难 1. 化学燃料最大 u 值为 实际上只是这个理论值的50% . 这个 u 值比带电粒子在电场作用下获得的速度 3108 m/s 小得多 , 由此引起人们对离子火箭 , 光子火箭的 遐想. 可惜它们喷出的物质太少, 从而推动力太小 即所需 加速过程太长 . 初速为0时 由得 当分离体 相对速度 当分离体 绝对速度 动量定理与牛顿第二定律(以火箭为例) 火箭受外力 相对 绝对 牵连 3-4 动能定理 一 功 物体作直线运动,恒力做功 物体作曲线运动,变力做功 元功: 总功: A B 质点同时受几个力作用时 合力的功等于各分力沿同一路径所做功的代数和 *计算力对物体做功时, 必须说明是哪个力对物体沿哪条 路径所做的功。 功率 二 动能定理 由 代入上式 因为: 1. 质点动能 或 2. 质点的动能定理 合外力对质点所做的功(其它物体对它所做的总功) 等于质点动能的增量 3. 质点系的动能定理 对n个质点组成的质点系: m1: 对每个质点分别使用动能定理 m2: mn: 所有外力对质点系做的功和内力对质点系做的功之和 等于质点系总动能的增量。 注意:内力能改变系统的总动能,但不能改变系统的总动量。 3. 质点系的动能定理 对n个质点组成的质点系: m1: 对每个质点分别使用动能定理 m2: mn: 一 一对力的功 相互作用的两个质点m1和m2 作用力 和反作用力 做功之和是否为0? 0 A1 B1 A2 B2 m1 m2 两个质点间的“一对力”做功之和等于其中一个质点受的 力 沿着该质点相对于另一质点所移动的路径所做的功。 3-5 保守力与非保守力 势能 作用力 做功是否为0? 做功之和是否为0? 反作用力 做功是否为0? 光滑 光滑 不光滑 二 保守力与非保守力 以重力做功为例 重力做功与路径无关 也可以写成 h b a 一对万有引力做的功 为单位矢量 如果一对力做的功与相对路径的形状无关,而只决定于相 互作用的质点的始末相对位置,这样的力叫保守力 A B L m1 m2 重力、弹性力、万有引力、静电力都具有上述特点: 1. 任意两点间做功与路径无关, 即 L1 A B L2 2. 沿任意闭合回路做功为 0. 即 沿任意回路做功为零的力 或做功与具体路径无关的力都称为保守力. 例: 大多数定向力和有心力都是保守力 从对称性角度看 保守力: 具有时间反演不变 非保守力: 不具有时间反演不变 当不变时 不变 保守力作功等于势能减少. AB 点 若选 B 为计算势能参考点, 取EpB = 0 势能 相对量: 相对于势能 零点的 系统量: 是属于相互作用的质点共有的 三 势能 (沿任意路径) (沿任意路径) 系统在任一位形时的势能等于它从此位形沿任意路径改 变至势能零点时保守力所做的功。 势能定义 势能与参考系无关(相对位移) 引力势能: m1 , m2 两质点引力势能 选 rB= 为零势点,EpB=0 重力势能: 选h=0 为零势点,EpB=0 弹性势能 f xAxB0 x 选 XB=0处(弹簧自然伸长位置)为零势点,EpB=0 则 引力势能: 选 处为零势点 弹性势能: 重力势能: 引力势能弹性势能 重力势能 选弹簧自然伸长位置为零势点 选 h=0处为零势点 引力势 能: 弹性势能: 重力势能: 引力 弹性力 重力 由势能求保守力 势能定义 保守力等于势能 的负梯度 一维保守力指向势能下降方向, 其大小正比于势能曲线的斜率. 拐点 势能“谷”或势阱 f x x2 x3 x4 x5 势能曲线 xx1 x2 x3 x4 x5 6 5 4 3 2 1 E .势能曲线 1. 一维系统如何用势能来求力? 保守力作功等于势能减少 势能曲线形象地表示出了系 统的稳定性. 势能“峰” ff “峰” 非稳定平衡点 f f “谷” 稳定平衡点 原子之间的相互作用力 - 保守力,可用势能曲线表示: 当 r E30 时,动能足够大, 原子将自由地飞散。 势能 动能 r 0 3-6 功能原理 机械能守恒定律 一 质点系的功能原理 机械能 由质点系动能定理 (前面讲过) 因为 所以 机械能 质点系的功能原理 二 机械能守恒定律 一个保守系,总的机械能的增加,等于外力对它所作的功; 从某一惯性参考系看, 外力作功为零, 则该系统的机械 能不变. 机械能守恒定律 根据质点系的功能原理 一个质点系在运动中,当只有保守内力做功 ,时,系统的机械能保持不变 三种宇宙速度 在地面发射卫星时的机械能 (1) 第一宇宙速度 卫星环绕地球运行所需要的最小速度 v1 当 圆 (2) 第二宇宙速度 脱离地球引力,成为 太阳的行星所需要的最小速度 v2 当 圆 椭圆 抛物线 双曲线 - 逃逸速度 (3) 第三宇宙速度 脱离太阳系所需要的最小速度 v3 物体在地球上, 地球相对于太阳的速度约为 29.8 km/s 脱离地球需要动能为: 史瓦西半径 或 引力半径 rs 黑洞 3-7 完全弹性碰撞 完全非弹性碰撞 一. 微观 粒子间相互作用是非接触的,双方有很强的相互斥力 ,迫使它们碰撞前就偏离原来运动方向而分开, 称为散射. 二. 宏观 在接触前无相互作用的碰撞两粒子直接接触, 相互作 用强. 忽略外力作用时, 两体系统总动量守恒. 质心动能不变 相对动能改变 1. 完全弹性碰撞 - 弹性碰撞 碰撞过程中 总动量守恒 Ekr 守恒 2. 完全非弹性碰撞 碰撞过程动量守恒, Ekr 耗散掉 碰后两物体不再分离. 即 3. 非完全弹性碰撞 动量守恒 恢复系数 正碰撞(对心碰撞)与相反 在质心参考系中:碰后两球的速度分别为 质心速度 质心系是零动量系, 由此得出 与的关系 上两式中 得完全弹性碰撞后的速度大小 得完全非弹性碰撞结果 得非完全弹性碰撞结果 3-8 能量守恒定律 所有的时间对于物理定律都是等价的,绝对的时间坐标无法测量。 - 时间的均匀性,也叫时间平移对称性或时间平移不变性 。 能量守恒定律的普遍性在于它与时间的均匀性相关联。 一个封闭系统经历任何变化时,该系统所有能量的总和 保持不变 普遍的能量守恒定律 3-9 质心 质心运动定律 质心定义 质 心 的 坐 标 0x y z m1 m2 mi c x 质 量 连 续 分 布 的 物 体 分量式 一 质心 二 质心运动定律 由质心定义 质点系的动量是质点系内各质点的动量的矢量和 质心运动定律 对时间求一阶和二阶导数可得 质心速度 质心加速度 当物体只作平动时, 质心运动代表整个物体的运动。 *质心参考系 0 x y z m1 m2 mi c 质心在其中静止的平动参考系 常常把坐标原点选在质心上 则 质心参考系也叫零动量参考系 动量守恒和空间平移对称性 一个物理系统沿空间某方向平移一个任意大小的距离后, 它的物理规律完全相同,这个事实叫做空间平移对称性或 空间平移不变性,也叫做空间的均匀性。 空间各点对物理规律是彼此等价的。 孤立系统的质心速度不变,这正是动量守恒定律。 三. 质点系的动能 - 质心速度 - 质点相对质心速度的 速度 设 - 柯尼希定理(轨道动能) (内动能或自旋动能) 0 c 四 质心参考系的功能关系 一个质点: 质点系: =0 (牛) 0 c 保守系统内能 相对质心参考系,外力对系统所 做的功等于系统内能的增量 此结论与质心参考系是否是惯性参考系无关! 守恒定律的意义(对称性和守恒定律) 一 对称性 1. 对称和破缺 2. 对称性的普遍定 义 讨论的对象称为系统(如球) 系统从一个状态变到另一个状态的过程称为变换(操作) 。 如果一个操作是系统从一个状态变到另一个与之等价的状态, 这个操作叫系统的对称操作 3. 物理学中对称性的分类 1) 某个系统和某件具体事物的对称性 2) 物理规律的对称性 (又称不变性) 球对称 加一记号 对称破坏 二. 对称性与守恒定律 1. 守恒定律 在宇宙中,某些量 (如:能量,动量和角动量等)的总量不变, 这些量是守恒的, 并用守恒定律的形式来描述这些概念 守恒定律是最基本的规律, 它们具有极大的普遍性 和可靠性,因而可以预言哪些过程是允许的,哪些过程是禁戒 的, 而不必考虑引起这些过程的物理机制 2.内特尔定律 如果运动规律在某一不明显依赖于时间的情况下具有不变性, 必相应存在一个守恒定律 3. 对称性与能量、动量和角动量守恒定律 1) 动量守恒定律: 从空间平移对称性(不变性)导出动量守恒 3. 对称性与能量、动量和角动量守恒定律 1) 动量守恒定律: 空间平移对称性(不变性) 动量守恒 空间均匀性(空间平移不变性) 两操作的最终状态AB与AB只是空间发生了平移 必然导出动量守恒定律 2) 角动量守恒 例: 两粒子 A, B 组成系统 空间各向同性 粒子间相互作用势能只与相对位置有关, 与空间取向无 关 B A A 空间各向同性 角动量守恒 即两粒子的相互作用沿两粒子的连线 这种说法与角动量守恒等价 3) 能量守恒定律 如果体系的力学性质与计算时间的起点 (t0时刻) 无关,称这个体系具有时间平移不变性或时间均匀性 从微观角度看, 时间均匀性意味着: 相互作用势只与两粒子的相对位置有关, 而不随时间变化, 即总能量守恒 总之:运动规律对时间原点选择的平移不变性决定了能量守恒 运动规律对空间原点选择的平移不变性决定了动量守恒 运动规律对空间转动不变性决定了角动量守恒 除以上还有电荷, 粒子数, 重子数, 轻子数, 同位旋和宇称数都是所谓守恒量. 1956年李政道和杨振宁提出, 1957年吴健雄通过精 密实验验证, 宇称在弱相互作用中不守恒 宇称 镜像对称性: 物放在平面镜前 平面镜 物像 物与像左右对称 例:人的手套左右对称 空间镜像属于空间反演 力学现象左右对称电磁现象左右对称 对于基本粒子系统, 左右对称的表现是: 概率密度的分布状况在镜中的像确实在实际中存在 宇称守恒: 凡是现实世界上的一种运动(或过程),只要它的镜像中的 运动可以在现实世界中实现,那么,这种运动(或过程)就称为 宇称守恒 (或左右对称)。 微观世界中,粒子的概率密度左右对称, 这是和空间左右对称性相对应的守恒定律 偶宇称 奇宇称 理论和实验都证明:在强相互作用中宇称守恒 但是在弱相互作用中宇称不守恒。 弱相互作用中宇称不守恒 19541956年实验发现: K介子有两种衰变方式 (三介子态) (二介子态) (介子具有奇宇称) 具有奇宇称 具有偶宇称 和实验发现电荷、质量、寿命完全相同, 是否是同种粒子? 如果宇称守恒不是同种粒子 如果是同种粒子弱相互作用中宇称不守恒 1956年杨振宁、李政道对这一矛盾进行了理论研究, 并且证明了 弱相互作用中宇称不守恒 吴健雄等人的实验证实了上述结论。 吴健雄等人的实验 钴原子衰变 电子飞向与核自旋相反方向 实验证明不存在其镜像运动 (即电子飞向与核自旋相同方向) 低温强磁场 核自旋相同 左旋中微子存在 右旋中微子不存在 左旋反中微子不存在右旋反中微子存在 上世纪60年代发现正反中微子后, 进一步证实弱相互作用中宇称不守恒。 试验证明: 微观体系如果同时进行空间镜像、时间反演和正反变换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省思茅市2025年上半年事业单位公开遴选试题含答案分析
- 河北省南宫市2025年上半年公开招聘村务工作者试题含答案分析
- 2025版石材荒料国际贸易代理及结算服务合同
- 2025年办公室装修室内装修污染治理合同
- 2025年度双方自愿离婚协议书编制与法律支持
- 2025版挖掘机租赁与施工安全监督合同
- 2025房产投资与招投标代理合作协议范本
- 2025版三方合作的城市绿地景观施工及维护合同
- 2025版房地产中介代理注册服务合同
- 河北省沧县2025年上半年公开招聘村务工作者试题含答案分析
- (2025秋新版)苏教版三年级数学上册全册教案
- 保密教育培训课件内容
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 2024-2025学年人教版数学五年级下学期期末试卷(含答案)
- 八大联考练习试卷附答案
- 2019三福百货品牌介绍51P
- 《安徒生童话》读书分享名著导读ppt
- 第1章制图基础-金大鹰
- 清欠工作管理制度管理办法
- 护理质量管理会议记录范文
- 干砌石护坡施工工艺标准
评论
0/150
提交评论