




已阅读5页,还剩77页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016年高考数学文试题分类汇编(12个专题) 一、集合与常用逻辑用语一、集合1、(2016年北京高考)(1)已知集合,则 (A) (B)(C)(D)【答案】C2、(2016年江苏省高考)已知集合则_. 【答案】3、(2016年山东高考)设集合,则=(A)(B)(C)(D)【答案】A4、(2016年四川高考)设集合A=x1x5,Z为整数集,则集合AZ中元素的个数是(A)6 (B) 5 (C)4 (D)3【答案】B5、(2016年天津高考)已知集合,则=( )(A)(B)(C)(D)【答案】A6、(2016年全国I卷高考)设集合,则(A)1,3(B)3,5(C)5,7(D)1,7【答案】B7、(2016年全国II卷高考)已知集合,则( )(A) (B)(C) (D)【答案】D8、(2016年全国III卷高考)设集合,则=(A) (B)(C)(D)【答案】C9、(2016年浙江高考)已知全集U=1,2,3,4,5,6,集合P=1,3,5,Q=1,2,4,则=( ) A.1B.3,5C.1,2,4,6D.1,2,3,4,5【答案】C二、常用逻辑用语1、(2016年山东高考)已知直线a,b分别在两个不同的平面,内,则“直线a和直线b相交”是“平面和平面相交”的(A)充分不必要条件(B)必要不充分条件(C)充要条件 (D)既不充分也不必要条件【答案】A2、(2016年上海高考)设,则“”是“”的( )(A) 充分非必要条件 (B)必要非充分条件(C)充要条件 (D)既非充分也非必要条件【答案】A3、(2016年上海高考)设、是定义域为的三个函数,对于命题:若、均为增函数,则、中至少有一个增函数;若、均是以为周期的函数,则、均是以为周期的函数,下列判断正确的是( )、和均为真命题、和均为假命题、为真命题,为假命题、为假命题,为真命题 【答案】D4、(2016年四川高考)设p:实数x,y满足x1且y1,q: 实数x,y满足x+y2,则p是q的(A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件【答案】A5、(2016年天津高考)设,则“”是“”的( )(A)充要条件 (B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件【答案】C6、(2016年浙江高考)已知函数f(x)=x2+bx,则“bb0,0c1,则(A)logaclogbc(B)logcalogcb(C)accb【答案】B6、(2016年全国I卷高考)函数y=2x2e|x|在2,2的图像大致为(A)(B)(C)(D)【答案】D7、(2016年全国II卷高考)下列函数中,其定义域和值域分别与函数y=10lgx的定义域和值域相同的是( )(A)y=x (B)y=lgx (C)y=2x (D)【答案】D8、(2016年全国II卷高考)已知函数f(x)(xR)满足f(x)=f(2-x),若函数y=|x2-2x-3| 与y=f(x) 图像的交点为(x1,y1),(x2,y2),(xm,ym),则( )(A)0 (B)m (C) 2m (D) 4m【答案】B9、(2016年全国III卷高考)已知,则(A) (B) (C) (D) 【答案】A10、(2016年浙江高考)已知函数满足:且.( )A.若,则 B.若,则 C.若,则 D.若,则【答案】B二、填空题1、(2016年江苏省高考)函数y=的定义域是 .【答案】2、(2016年江苏省高考)设f(x)是定义在R上且周期为2的函数,在区间 1,1)上, 其中 若 ,则的值是 .【答案】3、(2016年山东高考)已知函数f(x)=其中m0若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是_【答案】 4、(2016年上海高考)已知点在函数的图像上,则【答案】5、(2016年四川高考)若函数f(x)是定义R上的周期为2的奇函数,当0x1;(2)若关于的方程+=0的解集中恰有一个元素,求的值;(3)设0,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.【解析】 (1)由,得,解得(2)有且仅有一解,等价于有且仅有一解,等价于有且仅有一解当时,符合题意;当时,综上,或(3)当时,所以在上单调递减三、导数及其应用一、选择题1、(2016年山东高考)若函数的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称具有T性质.下列函数中具有T性质的是(A)(B)(C)(D)【答案】A2、(2016年四川高考)已知a函数f(x)x312x的极小值点,则a=(A)-4 (B) -2 (C)4 (D)2【答案】D3、(2016年四川高考)设直线l1,l2分别是函数f(x)= 图象上点P1,P2处的切线,l1与l2垂直相交于点P,且l1,l2分别与y轴相交于点A,B则则PAB的面积的取值范围是(A)(0,1) (B) (0,2) (C) (0,+) (D) (1,+ )【答案】A4、(2016年全国I卷高考)若函数在单调递增,则a的取值范围是(A)(B)(C)(D)【答案】C二、填空题1、(2016年天津高考)已知函数为的导函数,则的值为_.【答案】32、(2016年全国III卷高考)已知为偶函数,当 时,则曲线在点处的切线方程式_.【答案】三、解答题1、(2016年北京高考)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围;(III)求证:是有三个不同零点的必要而不充分条件.解:(I)由,得因为,所以曲线在点处的切线方程为(II)当时,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,使得由的单调性知,当且仅当时,函数有三个不同零点(III)当时,此时函数在区间上单调递增,所以不可能有三个不同零点当时,只有一个零点,记作当时,在区间上单调递增;当时,在区间上单调递增所以不可能有三个不同零点综上所述,若函数有三个不同零点,则必有故是有三个不同零点的必要条件当,时,只有两个不同点, 所以不是有三个不同零点的充分条件因此是有三个不同零点的必要而不充分条件2、(2016年江苏省高考)已知函数.(1) 设a=2,b=. 求方程=2的根;若对任意,不等式恒成立,求实数m的最大值;(2)若,函数有且只有1个零点,求ab的值.解:(1)因为,所以.方程,即,亦即,所以,于是,解得.由条件知.因为对于恒成立,且,所以对于恒成立.而,且,所以,故实数的最大值为4.(2)因为函数只有1个零点,而,所以0是函数的唯一零点.因为,又由知,所以有唯一解.令,则,从而对任意,所以是上的单调增函数,于是当,;当时,.因而函数在上是单调减函数,在上是单调增函数.下证.若,则,于是,又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾.若,同理可得,在和之间存在的非0的零点,矛盾.因此,.于是,故,所以.3、(2016年山东高考)设f(x)=xlnxax2+(2a1)x,aR.()令g(x)=f(x),求g(x)的单调区间;()已知f(x)在x=1处取得极大值.求实数a的取值范围.解析:()由 可得,则,当时, 时,函数单调递增;当时, 时,函数单调递增, 时,函数单调递减.所以当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为. ()由()知,.当时,单调递减.所以当时,单调递减.当时,单调递增.所以在x=1处取得极小值,不合题意.当时,由()知在内单调递增,可得当当时,时,所以在(0,1)内单调递减,在内单调递增,所以在x=1处取得极小值,不合题意.当时,即时,在(0,1)内单调递增,在 内单调递减,所以当时, 单调递减,不合题意.当时,即 ,当时,单调递增,当时,单调递减,所以f(x)在x=1处取得极大值,合题意.综上可知,实数a的取值范围为.4、(2016年四川高考)设函数f(x)=ax2alnx,g(x)=,其中aR,e=2.718为自然对数的底数。()讨论f(x)的单调性;()证明:当x1时,g(x)0;()确定a的所有可能取值,使得f(x)g(x)在区间(1,+)内恒成立。(I) 0,在内单调递减.由=0,有.当时,0,单调递增.(II)令=,则=.当时,0,所以,从而=0.(iii)由(II),当时,0.当,时,=.故当在区间内恒成立时,必有.当时,1.由(I)有,从而,所以此时在区间内不恒成立.当时,令=().当时,=.因此在区间单调递增.又因为=0,所以当时,=0,即恒成立.综上,.5、(2016年天津高考)设函数,其中()求的单调区间;()若存在极值点,且,其中,求证:;()设,函数,求证:在区间上的最大值不小于.(1)解:由,可得,下面分两种情况讨论:当时,有恒成立,所以的单调增区间为.当时,令,解得或.当变化时,、的变化情况如下表:0单调递增极大值单调递减极小值单调递增所以的单调递减区间为,单调递增区间为,.(2)证明:因为存在极值点,所以由(1)知且.由题意得,即,进而,又,且,由题意及(1)知,存在唯一实数满足,且,因此,所以.(3)证明:设在区间上的最大值为,表示,两数的最大值,下面分三种情况讨论:当时,由(1) 知在区间上单调递减,所以在区间上的取值范围为,因此, 所以.当时,由(1)和(2) 知,所以在区间上的取值范围为,所以.当时,由(1)和(2)知,所以在区间上的取值范围为,因此,.综上所述,当时,在区间上的最大值不小于.6、(2016年全国I卷高考)已知函数fx=x-2ex+a(x-1)2.(I)讨论f(x)的单调性;(II)若f(x)有两个零点,求的取值范围.【解析】()( i )当时,则当时,;当时,故函数在单调递减,在单调递增( ii )当时,由,解得:或若,即,则,故在单调递增若,即,则当时,;当时,故函数在,单调递增;在单调递减若,即,则当时,;当时,;故函数在,单调递增;在单调递减()(i)当时,由()知,函数在单调递减,在单调递增又,取实数满足且,则有两个零点(ii)若,则,故只有一个零点(iii)若,由(I)知,当,则在单调递增,又当时,故不存在两个零点;当,则函数在单调递增;在单调递减又当时,故不存在两个零点综上所述,的取值范围是7、(2016年全国II卷高考) 已知函数.(I)当时,求曲线在处的切线方程;()若当时,求的取值范围.解析:(I)的定义域为.当时,所以曲线在处的切线方程为(II)当时,等价于令,则,(i)当,时, ,故在上单调递增,因此;(ii)当时,令得,由和得,故当时,在单调递减,因此.综上,的取值范围是8、(2016年全国III卷高考)设函数(I)讨论的单调性;(II)证明当时,;(III)设,证明当时,.9、(2016年浙江高考)设函数=,.证明:(I);(II). 解析:()因为由于,有即,所以()由得,故,所以.由()得,又因为,所以,综上,四、不等式一、选择题1、(2016年山东高考)若变量x,y满足则x2+y2的最大值是(A)4(B)9(C)10(D)12【答案】C2、(2016年浙江高考)若平面区域 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A. B. C. D. 【答案】B3、(2016年浙江高考)已知a,b0,且a1,b1,若 ,则( )A. B. C. D. 【答案】D二、填空题1、(2016年北京高考)函数的最大值为_.【答案】22、(2016江苏省高考) 已知实数x,y满足 ,则x2+y2的取值范围是 .【答案】3、(2016年上海高考)设,则不等式的解集为_.【答案】4、(2016上海高考)若满足 则的最大值为_.【答案】5、(2016全国I卷高考)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为 元.【答案】6、(2016全国II卷高考)若x,y满足约束条件,则的最小值为_【答案】7、(2016全国III卷高考)若满足约束条件 则的最大值为_.【答案】8、(2016年浙江高考)11、(2016江苏省高考)函数y=的定义域是 .【答案】三、解答题1、(2016年天津高考)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.()用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;()问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.()解:由已知满足的数学关系式为,该二元一次不等式组所表示的区域为图1中的阴影部分.()解:设利润为万元,则目标函数,这是斜率为,随变化的一族平行直线.为直线在轴上的截距,当取最大值时,的值最大.又因为满足约束条件,所以由图2可知,当直线经过可行域中的点时,截距的值最大,即的值最大.解方程组得点的坐标为,所以.答:生产甲种肥料车皮,乙种肥料车皮时利润最大,且最大利润为万元.五、三角函数一、选择题1、(2016年山东高考)中,角A,B,C的对边分别是a,b,c,已知,则A=(A)(B)(C)(D)【答案】C2、(2016年上海高考)设,.若对任意实数x都有,则满足条件的有序实数对(a,b)的对数为( )(A)1 (B)2 (C)3 (D)4【答案】B3、(2016年四川高考) 为了得到函数y=sin的图象,只需把函数y=sinx的图象上所有的点(A)向左平行移动个单位长度 (B) 向右平行移动个单位长度 (C) 向上平行移动个单位长度 (D) 向下平行移动个单位长度【答案】A4、(2016年天津高考)已知函数,.若在区间内没有零点,则的取值范围是( )(A) (B) (C) (D)【答案】D5、(2016年全国I卷高考)ABC的内角A、B、C的对边分别为a、b、c.已知,则b=(A)(B)(C)2(D)3【答案】D6、(2016年全国I卷高考)将函数y=2sin (2x+)的图像向右平移个周期后,所得图像对应的函数为(A)y=2sin(2x+) (B)y=2sin(2x+) (C)y=2sin(2x) (D)y=2sin(2x)【答案】D7、(2016年全国II卷高考)函数的部分图像如图所示,则( )(A) (B)(C) (D)【答案】A 8、(2016年全国II卷高考)函数的最大值为( )(A)4 (B)5 (C)6 (D)7【答案】B9、(2016年全国III卷高考)若 ,则( )(A) (B) (C) (D)【答案】D10、(2016年全国III卷高考)在中,BC边上的高等于,则 (A) (B) (C) (D)【答案】D11、(2016年浙江高考)函数y=sinx2的图象是( )【答案】D二、填空题1、(2016年北京高考)在ABC中, ,a=c,则=_.【答案】12、(2016年江苏省高考)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是 .【答案】8.3、(2016年上海高考)若函数的最大值为5,则常数_.【答案】4、(2016年上海高考)方程在区间上的解为_ 【答案】5、(2016年四川高考)= 。【答案】6、(2016年全国I卷高考)已知是第四象限角,且sin(+)=,则tan()= .【答案】7、(2016年全国II卷高考)ABC的内角A,B,C的对边分别为a,b,c,若,a=1,则b=_.【答案】8、(2016年全国III卷高考)函数的图像可由函数的图像至少向右平移_个单位长度得到【答案】9、(2016年浙江高考)已知,则_【答案】;110、(2016年上海高考)已知的三边长分别为3,5,7,则该三角形的外接圆半径等于_【答案】三、解答题1、(2016年北京高考)已知函数f(x)=2sin x cos x+ cos 2x(0)的最小正周期为.()求的值;()求f(x)的单调递增区间.解:(I)因为,所以的最小正周期依题意,解得(II)由(I)知函数的单调递增区间为()由,得所以的单调递增区间为()2、(2016年江苏省高考)在中,AC=6,(1)求AB的长;(2)求的值. 解(1)因为所以由正弦定理知,所以(2)在三角形ABC中,所以于是又,故因为,所以因此3、(2016年山东高考)设 .(I)求得单调递增区间;(II)把的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.解析:()由 由得 所以,的单调递增区间是 (或)()由()知把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到的图象,再把得到的图象向左平移个单位,得到的图象,即所以 4、(2016年四川高考)在ABC中,角A,B,C所对的边分别是a,b,c,且。(I)证明:sinAsinB=sinC;(II)若,求tanB。解析:()根据正弦定理,可设 则a=ksin A,b=ksin B,c=ksinC.代入中,有,可变形得sin A sin B=sin Acos B=sin (A+B).在ABC中,由A+B+C=,有sin (A+B)=sin (C)=sin C,所以sin A sin B=sin C.()由已知,b2+c2a2=bc,根据余弦定理,有.所以sin A=.由(),sin Asin B=sin Acos B +cos Asin B,所以sin B=cos B+sin B,故tan B=4.5、(2016年天津高考)在中,内角所对应的边分别为a,b,c,已知.()求B;()若,求sinC的值.解析:()解:在中,由,可得,又由得,所以,得;()解:由得,则,所以6、(2016年浙江高考)在ABC中,内角A,B,C所对的边分别为a,b,c已知b+c=2acos B()证明:A=2B;()若cos B=,求cos C的值解析:(1)由正弦定理得,故,于是,又,故,所以或,因此,(舍去)或,所以,.(2)由,得,故,.六、统计与概率一、选择题1、(2016年北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(A) (B) (C) (D) 【答案】B2、(2016年北京高考)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米)1.961.921.821.801.781.761.741.721.681.6030秒跳绳(单位:次)63a7560637270a1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则(A)2号学生进入30秒跳绳决赛 (B)5号学生进入30秒跳绳决赛 (C)8号学生进入30秒跳绳决赛 (D)9号学生进入30秒跳绳决赛【答案】B3、(2016年山东高考)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20), 20,22.5), 22.5,25),25,27.5),27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A)56(B)60(C)120(D)140【答案】D4、(2016年天津高考)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为(A)(B)(C)(D)【答案】A5、(2016年全国I卷高考)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(A)(B)(C)(D)【答案】C6、(2016年全国II卷高考)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( )(A) (B) (C) (D)【答案】B7、(2016年全国III卷高考)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C。下面叙述不正确的是(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D8、(2016年全国III卷高考)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是(A) (B) (C) (D) 【答案】C二、填空题1、(2016年北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店第一天售出但第二天未售出的商品有_种;这三天售出的商品最少有_种.【答案】16;29 2、(2016年江苏省高考)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是_. 【答案】0.13、(2016年江苏省高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .【答案】4、(2016年上海高考)某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_(米)【答案】1.76三、解答题1、(2016年北京高考)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.解:(I)由用水量的频率分布直方图知,该市居民该月用水量在区间,内的频率依次为,所以该月用水量不超过立方米的居民占%,用水量不超过立方米的居民占%依题意,至少定为(II)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:组号12345678分组频率根据题意,该市居民该月的人均水费估计为:(元)2、(2016年山东高考)某儿童乐园在“六一”儿童节退出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:若,则奖励玩具一个;若,则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.解析:用数对表示儿童参加活动先后记录的数,则基本事件空间与点集一一对应.因为中元素个数是所以基本事件总数为()记“”为事件.则事件包含的基本事件共有个,即 所以,即小亮获得玩具的概率为.()记“”为事件,“”为事件.则事件包含的基本事件共有个,即所以,则事件包含的基本事件共有个,即所以,因为所以,小亮获得水杯的概率大于获得饮料的概率.4、(2016年上海高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5), 0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图。(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数说明理由;()估计居民月均用水量的中位数。【解析】()由频率分布直方图,可知:月用水量在0,0.5的频率为0.080.5=0.04.同理,在0.5,1),(1.5,2,2,2.5),3,3.5),3.5,4),4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5a+0.5a,解得a=0.30.()由(),100位居民月均水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为3000000.13=36000.()设中位数为x吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.730.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.480.5所以2x2.5.由0.50(x2)=0.50.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.5、(2016年全国I卷高考)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数.(I)若=19,求y与x的函数解析式;(II)若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?()由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故的最小值为19.()若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为.若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购买易损零件上所需费用的平均数为.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.6、(2016年全国II卷高考)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234频数605030302010()记A为事件:“一续保人本年度的保费不高于基本保费”.求的估计值;()记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160”.求的估计值;(III)求续保人本年度的平均保费估计值.解析:()事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内险次数小于2的频率为,故P(A)的估计值为0.55.()事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为,故P(B)的估计值为0.3.()由题所求分布列为:保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查200名续保人的平均保费为,因此,续保人本年度平均保费估计值为1.1925a.9、(2016年全国III卷高考)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图()由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;()建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:,2.646.参考公式:相关系数 回归方程 中斜率和截距的最小二乘估计公式分别为:()由及()得,所以,关于的回归方程为:. .10分将2016年对应的代入回归方程得:.所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨. .12分七、数列一、选择题1、(2016年浙江高考)如图,点列分别在某锐角的两边上,且,.(PQ表示点P与Q不重合)若,为的面积,则( )A.是等差数列 B.是等差数列 C.是等差数列 D.是等差数列【答案】A二、填空题1、(2016年江苏省高考)已知an是等差数列,Sn是其前n项和.若a1+a22=3,S5=10,则a9的值是 .【答案】2、(2016年上海高考)无穷数列an由k个不同的数组成,Sn为an的前n项和.若对任意的,则k的最大值为 .【答案】4三、解答题1、(2016年北京高考)已知an是等差数列,bn是等差数列,且b2=3,b3=9,a1=b1,a14=b4.()求an的通项公式;()设cn= an+ bn,求数列cn的前n项和.解:(I)等比数列的公比,所以,设等差数列的公差为因为,所以,即所以(,)(II)由(I)知,因此从而数列的前项和2、(2016年江苏省高考)记.对数列和的子集T,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.(1)求数列的通项公式;(2)对任意正整数,若,求证:;(3)设,求证:.(1)由已知得.于是当时,.又,故,即.所以数列的通项公式为.(2)因为,所以.因此,.(3)下面分三种情况证明.若是的子集,则.若是的子集,则.若不是的子集,且不是的子集.令,则,.于是,进而由,得.设是中的最大数,为中的最大数,则.由(2)知,于是,所以,即.又,故,从而,故,所以,即.综合得,.3、(2016年山东高考)已知数列的前n项和,是等差数列,且.(I)求数列的通项公式; (II)令.求数列的前n项和. 【解析】()由题意得,解得,得到。()由()知,从而 利用“错位相减法”即得试题解析:()由题意当时,当时,;所以;设数列的公差为,由,即,解之得,所以。()由()知,又,即,所以,以上两式两边相减得。所以4、(2016年上海高考)对于无穷数列与,记A=|=,B=|=,若同时满足条件:,均单调递增;且,则称与是无穷互补数列.(1)若=,=,判断与是否为无穷互补数列,并说明理由;(2)若=且与是无穷互补数列,求数列的前16项的和;(3)若与是无穷互补数列,为等差数列且=36,求与得通项公式.解析:(1)因为,所以,从而与不是无穷互补数列(2)因为,所以数列的前项的和为(3)设的公差为,则由,得或若,则,与“与是无穷互补数列”矛盾;若,则,综上,5、(2016年四川高考)已知数列an的首项为1, Sn为数列an的前n项和,Sn+1=Sn+1,其中q0,nN+()若a2,a3,a2+ a3成等差数列,求数列an的通项公式;()设双曲线x2=1的离心率为en,且e2=2,求e12+ e22+en2,解析:()由已知, 两式相减得到.又由得到,故对所有都成立.所以,数列是首项为1,公比为q的等比数列.从而.由成等差数列,可得,所以,故.所以.()由()可知,.所以双曲线的离心率.由解得.所以,6、(2016年天津高考)已知是等比数列,前n项和为,且.()求的通项公式;()若对任意的是和的等差中项,求数列的前2n项和.解析:()解:设数列的公比为,由已知有,解之可得,又由知,所以,解之得,所以.()解:由题意得,即数列是首项为,公差为的等差数列.设数列的前项和为,则7、(2016年全国I卷高考)已知是公差为3的等差数列,数列满足.(I)求的通项公式;(II)求的前n项和.解:(I)由已知,得得,所以数列是首项为2,公差为3的等差数列,通项公式为.(II)由(I)和 ,得,因此是首项为1,公比为的等比数列.记的前项和为,则8、(2016年全国II卷高考)等差数列中,.()求的通项公式;() 设,求数列的前10项和,其中表示不超过的最大整数,如0.9=0,2.6=2.解析:()设数列的公差为d,由题意有,解得,所以的通项公式为.()由()知,当1,2,3时,;当4,5时,;当6,7,8时,;当9,10时,所以数列的前10项和为.9、(2016年全国III卷高考)已知各项都为正数的数列满足,.(I)求;(II)求的通项公式.10、(2016年浙江高考)设数列的前项和为.已知=4,=2+1,.(I)求通项公式;(II)求数列的前项和.解析:(1)由题意得:,则,又当时,由,得,所以,数列的通项公式为.(2)设,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司策划活动方案
- 公司每天晨跑活动方案
- 2025年心理咨询与心理治疗基础知识考试试题及答案
- 2025年市场营销策划考试试题及答案
- 2025年时尚设计师职业资格考试试卷及答案
- 2025年摄影师职业技能测试试题及答案
- 2025年民法典相关知识的考试试题及答案
- 2025年城市交通与环境问题分析考试试题及答案
- 2025年中国冷压香皂行业市场全景分析及前景机遇研判报告
- 二型糖尿病的护理
- 2025年山东夏季高中学业水平合格考模拟生物试卷(含答案)
- 大连海事大学育鲲轮电机员培训课件详解
- GB/T 45577-2025数据安全技术数据安全风险评估方法
- IgG4肾病的诊断和治疗
- 中国啤酒篮行业市场发展前景及发展趋势与投资战略研究报告2025-2028版
- 2025年中国直接结合镁铬砖数据监测研究报告
- 会议流程规划能力试题及答案
- 中药硬膏热贴敷操作流程
- 西安历年美术中考题及答案
- 国家开放大学《管理学基础》形考任务1-4答案
- 眩晕中医临床路径解读
评论
0/150
提交评论