




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1已知sin+cos=,则sincos的值为()A B C D2已知sin=,并且是第二象限的角,那么tan的值等于()A B C D3已知,且,则tan=()A B C D4若(,),3cos2=sin(),则sin2的值为()A B C D5若cos()=,则sin2=()A B C D6已知tan()=,则的值为()A B2 C2 D27已知sin2=,则cos2(+)=()A B C D8已知,则等于()A B C D9已知锐角的终边上一点P(sin40,1+cos40),则等于()A10 B20 C70 D80104cos50tan40=()A B C D21参考答案与试题解析1(2016惠州模拟)已知sin+cos=,则sincos的值为()ABCD【分析】由题意可得可得1cossin0,2sincos=,再根据sincos=,计算求得结果【解答】解:由sin+cos=,可得1cossin0,1+2sincos=,2sincos=sincos=,故选:B【点评】本题主要考查同角三角函数的基本关系,正弦函数、余弦函数的定义域和值域,属于基础题2(1991全国)已知sin=,并且是第二象限的角,那么tan的值等于()ABCD【分析】由角的正弦值和角所在的象限,求出角的余弦值,然后,正弦值除以余弦值得正切值【解答】解:sin=且是第二象限的角,故选A【点评】掌握同角三角函数的基本关系式,并会运用它们进行简单的三角函数式的化简、求值及恒等式证明本题是给值求值3(2016汕头模拟)已知,且,则tan=()ABCD【分析】通过诱导公式求出sin的值,进而求出cos的值,最后求tan【解答】解:cos(+)=;sin=;又cos=tan=故答案选B【点评】本题主要考查三角函数中的诱导公式的应用属基础题4(2016湖南模拟)若(,),3cos2=sin(),则sin2的值为()ABCD【分析】直接利用两角和与差的三角函数以及二倍角的余弦函数化简函数的表达式,利用平方关系式求出结果即可【解答】解:3cos2=sin(),可得3cos2=(cossin),3(cos2sin2)=(cossin),(,),sincos0,上式化为:sin+cos=,两边平方可得1+sin2=sin2=故选:D【点评】本题主要考查二倍角的余弦函数,同角三角函数的基本关系的应用,属于中档题5(2016新课标)若cos()=,则sin2=()ABCD【分析】法1:利用诱导公式化sin2=cos(2),再利用二倍角的余弦可得答案法:利用余弦二倍角公式将左边展开,可以得sin+cos的值,再平方,即得sin2的值【解答】解:法1:cos()=,sin2=cos(2)=cos2()=2cos2()1=21=,法2:cos()=(sin+cos)=,(1+sin2)=,sin2=21=,故选:D【点评】本题考查三角函数的恒等变换及化简求值,熟练掌握诱导公式化与二倍角的余弦是关键,属于中档题6(2016河南模拟)已知tan()=,则的值为()AB2C2D2【分析】由tan()=,求出tan,然后对表达式的分子、分母同除以cos,然后代入即可求出表达式的值【解答】解:由tan()=,得tan=3则=故选:B【点评】本题考查了三角函数的化简求值,注意表达式的分子、分母同除以cos,是解题的关键,是基础题7(2013新课标)已知sin2=,则cos2(+)=()ABCD【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值【解答】解:sin2=,cos2(+)=1+cos(2+)=(1sin2)=(1)=故选A【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键8(2017自贡模拟)已知,则等于()ABCD【分析】利用同角三角函数的基本关系求得sin(+)的值,再利用两角和差的三角公式求得 cos=cos(+)以及sin=sin(+)的值,可得要求式子的值【解答】解:,sin(+)=,而 cos=cos(+)=cos(+)cos+sin(+)sin=,sin=sin(+)=sin(+)coscos(+)sin=,则=sincos+cossin+sin=sin+cos=,故选:A【点评】本题主要考查同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题9(2017平遥县模拟)已知锐角的终边上一点P(sin40,1+cos40),则等于()A10B20C70D80【分析】由题意求出PO的斜率,利用二倍角公式化简,通过角为锐角求出角的大小即可【解答】解:由题意可知sin400,1+cos400,点P在第一象限,OP的斜率tan=cot20=tan70,由为锐角,可知为70故选C【点评】本题考查直线的斜率公式的应用,三角函数的化简求值,考查计算能力10(2013重庆)4cos50tan40=()ABCD21【分析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版智能合约委托管理合同
- 2025版汽车维修场地租赁合同协议(含售后服务)
- 贵州省修文县2025年上半年事业单位公开遴选试题含答案分析
- 2025版建筑设备监造与施工质量监督合同
- 2025年度养老院清洁护理服务合同范本
- 2025版企业内部市场分析与服务承包合同
- 河北省故城县2025年上半年公开招聘村务工作者试题含答案分析
- 2025二手住宅买卖合同范本:山地别墅
- 2025年标准板材市场推广与销售代理合同
- 2025版公共设施消防栓系统更换与维护服务合同
- 2025年事业单位招聘考试卫生类中医学专业知识试卷(精神科)
- 小学一年级综合实践活动教案
- 《运营管理》考试试卷及参考答案(很全很标准)
- 浪浪山开学教案1
- 2025年北京市公安机关人民警察特殊职位公务员招录考试(网络技术)历年参考题库含答案详解(5套)
- 行为面试法培训课件
- X射线电离辐射安全知识培训课件
- 医院洁净手术部建筑技术规范
- 上腔静脉综合征护理查房
- 《机械创新设计》课件-k第七章-机械结构设计与创新
- 2025年新退休返聘人员协议书
评论
0/150
提交评论