




已阅读5页,还剩89页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017中考试题汇编二次函数1、(2017绵阳)将二次函数y=x2的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()Ab8Bb8Cb8Db8选D2、(2017眉山)若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2ax()A有最大值B有最大值C有最小值D有最小值选D3、(2017潍坊)如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(1,0)、D(2,3),抛物线与x轴的另一交点为E经过点E的直线l将平行四边形ABCD分割为面积相等两部分,与抛物线交于另一点F点P在直线l上方抛物线上一动点,设点P的横坐标为t(1)求抛物线的解析式;(2)当t何值时,PFE的面积最大?并求最大值的立方根;(3)是否存在点P使PAE为直角三角形?若存在,求出t的值;若不存在,说明理由解:(1)由题意可得,解得,抛物线解析式为y=x2+2x+3;(2)A(0,3),D(2,3),BC=AD=2,B(1,0),C(1,0),线段AC的中点为(,),直线l将平行四边形ABCD分割为面积相等两部分,直线l过平行四边形的对称中心,A、D关于对称轴对称,抛物线对称轴为x=1,E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,直线l的解析式为y=x+,联立直线l和抛物线解析式可得,解得或,F(,),如图1,作PHx轴,交l于点M,作FNPH,P点横坐标为t,P(t,t2+2t+3),M(t,t+),PM=t2+2t+3(t+)=t2+t+,SPEF=SPFM+SPEM=PMFN+PMEH=PM(FN+EH)=(t2+t+)(3+)=(t)+,当t=时,PEF的面积最大,其最大值为,最大值的立方根为=;(3)由图可知PEA90,只能有PAE=90或APE=90,当PAE=90时,如图2,作PGy轴,OA=OE,OAE=OEA=45,PAG=APG=45,PG=AG,t=t2+2t+33,即t2+t=0,解得t=1或t=0(舍去),当APE=90时,如图3,作PKx轴,AQPK,则PK=t2+2t+3,AQ=t,KE=3t,PQ=t2+2t+33=t2+2t,APQ+KPE=APQ+PAQ=90,PAQ=KPE,且PKE=PQA,PKEAQP,=,即=,即t2t1=0,解得t=或t=(舍去),综上可知存在满足条件的点P,t的值为1或4、(2017成都)在平面直角坐标系 中,二次函数的图像如图所示,下列说法正确的是 ( )A B C. D选B5、(2017成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为 ,(单位:千米),乘坐地铁的时间单位:分钟)是关于的一次函数,其关系如下表:地铁站(千米)891011.513(分钟)1820222528(1)求关于的函数表达式;(2)李华骑单车的时间(单位:分钟)也受的影响,其关系可以用来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间.6、(2017成都)如图1,在平面直角坐标系中,抛物线与轴相交于两点,顶点为,设点是轴的正半轴上一点,将抛物线绕点旋转180,得到新的抛物线(1)求抛物线的函数表达式;(2)若抛物线与抛物线在轴的右侧有两个不同的公共点,求的取值范围;(3)如图2,是第一象限内抛物线上一点,它到两坐标轴的距离相等,点在抛物线上的对应点为,设是上的动点,是上的动点,试探究四边形能否成为正方形,若能,求出的值;若不能,请说明理由7、(2017达州)已知二次函数y=ax2+bx+c的图象如下,则一次函数y=ax2b与反比例函数y=在同一平面直角坐标系中的图象大致是()ABCD选:C8、(2017达州)(8分)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成已知每件产品的出厂价为60元工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?【解答】解:(1)根据题意,得:若7.5x=70,得:x=4,不符合题意;5x+10=70, 解得:x=12,答:工人甲第12天生产的产品数量为70件;(2)由函数图象知,当0x4时,P=40,当4x14时,设P=kx+b, 将(4,40)、(14,50)代入,得:,解得:,P=x+36;当0x4时,W=(6040)7.5x=150x,W随x的增大而增大,当x=4时,W最大=600元;当4x14时,W=(60x36)(5x+10)=5x2+110x+240=5(x11)2+845, 当x=11时,W最大=845,845600,当x=11时,W取得最大值,845元,答:第11天时,利润最大,最大利润是845元9、(2017达州)(12分)如图1,点A坐标为(2,0),以OA为边在第一象限内作等边OAB,点C为x轴上一动点,且在点A右侧,连接BC,以BC为边在第一象限内作等边BCD,连接AD交BC于E(1)直接回答:OBC与ABD全等吗?试说明:无论点C如何移动,AD始终与OB平行;(2)当点C运动到使AC2=AEAD时,如图2,经过O、B、C三点的抛物线为y1试问:y1上是否存在动点P,使BEP为直角三角形且BE为直角边?若存在,求出点P坐标;若不存在,说明理由;(3)在(2)的条件下,将y1沿x轴翻折得y2,设y1与y2组成的图形为M,函数y=x+m的图象l与M有公共点试写出:l与M的公共点为3个时,m的取值【解答】解:(1)OBC与ABD全等,理由是:如图1,OAB和BCD是等边三角形,OBA=CBD=60,OB=AB,BC=BD,OBA+ABC=CBD+ABC,即OBC=ABD,OBCABD(SAS);OBCABD,BAD=BOC=60,OBA=BAD,OBAD,无论点C如何移动,AD始终与OB平行;(2)如图2,AC2=AEAD,EAC=DAC,AECACD,ECA=ADC,BAD=BAO=60,DAC=60,BED=AEC,ACB=ADB,ADB=ADC,BD=CD,DEBC,RtABE中,BAE=60,ABE=30,来源:Zxxk.ComAE=AB=2=1,RtAEC中,EAC=60,ECA=30,AC=2AE=2,C(4,0),等边OAB中,过B作BHx轴于H,BH=,B(1,),设y1的解析式为:y=ax(x4),把B(1,)代入得: =a(14),a=,设y1的解析式为:y1=x(x4)=x2+x,过E作EGx轴于G,RtAGE中,AE=1,AG=AE=,EG=,E(,),设直线AE的解析式为:y=kx+b,把A(2,0)和E(,)代入得:,解得:,直线AE的解析式为:y=x2,则,解得:,P(3,)或(2,4);(3)如图3,y1=x2+x=(x2)2+,顶点(2,),抛物线y2的顶点为(2,),y2=(x2)2,当m=0时,y=x与图形M两公共点,当y2与l相切时,即有一个公共点,l与图形M有3个公共点,则,=,x27x3m=0,=(7)241(3m)0,m,来源:Z,xx,k.Com当l与M的公共点为3个时,m的取值是:m010、(2017内江)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;(3)在点M运动过程中,是否存在某一时刻t,使MBN为直角三角形?若存在,求出t值;若不存在,请说明理由【解答】解:(1)点B坐标为(4,0),抛物线的对称轴方程为x=1A(2,0),把点A(2,0)、B(4,0)、点C(0,3),分别代入y=ax2+bx+c(a0),得,解得,所以该抛物线的解析式为:y=x2+x+3;(2)设运动时间为t秒,则AM=3t,BN=tMB=63t由题意得,点C的坐标为(0,3)在RtBOC中,BC=5如图1,过点N作NHAB于点HNHCO,BHNBOC,即=,HN=tSMBN=MBHN=(63t)t=t2+t=(t1)2+,当PBQ存在时,0t2,当t=1时,SPBQ最大=答:运动1秒使PBQ的面积最大,最大面积是;(3)如图2,在RtOBC中,cosB=设运动时间为t秒,则AM=3t,BN=tMB=63t当MNB=90时,cosB=,即=,化简,得17t=24,解得t=,当BMN=90时,cosB=,化简,得19t=30,解得t=,综上所述:t=或t=时,MBN为直角三角形10、(2017泸州)已知抛物线y=x2+1具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x轴的距离始终相等,如图,点M的坐标为(,3),P是抛物线y=x2+1上一个动点,则PMF周长的最小值是()A3B4C5D6选C11、(2017泸州)如图,已知二次函数y=ax2+bx+c(a0)的图象经过A(1,0)、B(4,0)、C(0,2)三点(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足DBA=CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若PEB、CEF的面积分别为S1、S2,求S1S2的最大值【解答】解:(1)由题意可得,解得,抛物线解析式为y=x2+x+2;(2)当点D在x轴上方时,过C作CDAB交抛物线于点D,如图1,A、B关于对称轴对称,C、D关于对称轴对称,四边形ABDC为等腰梯形,CAO=DBA,即点D满足条件,D(3,2);当点D在x轴下方时,DBA=CAO,BDAC,C(0,2),可设直线AC解析式为y=kx+2,把A(1,0)代入可求得k=2,直线AC解析式为y=2x+2,可设直线BD解析式为y=2x+m,把B(4,0)代入可求得m=8,直线BD解析式为y=2x8,联立直线BD和抛物线解析式可得,解得或,D(5,18);综上可知满足条件的点D的坐标为(3,2)或(5,18);(3)过点P作PHy轴交直线BC于点H,如图2,设P(t, t2+t+2),由B、C两点的坐标可求得直线BC的解析式为y=x+2,H(t, t+2),PH=yPyH=t2+t+2(t+2)=t2+2t,设直线AP的解析式为y=px+q,解得,直线AP的解析式为y=(t+2)(x+1),令x=0可得y=2t,F(0,2t),CF=2(2t)=t,联立直线AP和直线BC解析式可得,解得x=,即E点的横坐标为,S1=PH(xBxE)=(t2+2t)(5),S2=,S1S2=(t2+2t)(5)=t2+5t=(t)2+,当t=时,有S1S2有最大值,最大值为12、(2017南充)二次函数y=ax2+bx+c(a、b、c是常数,且a0)的图象如图所示,下列结论错误的是()A4acb2Babc0Cb+c3aDab选(D)13、(2017南充)如图1,已知二次函数y=ax2+bx+c(a、b、c为常数,a0)的图象过点O(0,0)和点A(4,0),函数图象最低点M的纵坐标为,直线l的解析式为y=x(1)求二次函数的解析式;(2)直线l沿x轴向右平移,得直线l,l与线段OA相交于点B,与x轴下方的抛物线相交于点C,过点C作CEx轴于点E,把BCE沿直线l折叠,当点E恰好落在抛物线上点E时(图2),求直线l的解析式;(3)在(2)的条件下,l与y轴交于点N,把BON绕点O逆时针旋转135得到BON,P为l上的动点,当PBN为等腰三角形时,求符合条件的点P的坐标【解答】解:(1)由题意抛物线的顶点坐标为(2,),设抛物线的解析式为y=a(x2)2,把(0,0)代入得到a=,抛物线的解析式为y=(x2)2,即y=x2x(2)如图1中,设E(m,0),则C(m, m2m),B(m2+m,0),E在抛物线上,E、B关于对称轴对称,=2,解得m=1或6(舍弃),B(3,0),C(1,2),直线l的解析式为y=x3(3)如图2中,当P1与N重合时,P1BN是等腰三角形,此时P1(0,3)当N=NB时,设P(m,m3),则有(m)2+(m3)2=(3)2,解得m=或,P2(,),P3(,)综上所述,满足条件的点P坐标为(0,3)或(,)或(,)14、(2017乐山)已知二次函数y=x22mx(m为常数),当1x2时,函数值y的最小值为2,则m的值是()A32B2C32或2D-32或2选:D15、(2017乐山)如图1,抛物线C1:y=x2+ax与C2:y=x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点(1)求 ab的值;(2)若OCAC,求OAC的面积;(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:点P为抛物线C2对称轴l上一动点,当PAC的周长最小时,求点P的坐标;如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由【解答】解:(1)在y=x2+ax中,当y=0时,x2+ax=0,x1=0,x2=a,B(a,0),在y=x2+bx中,当y=0时,x2+bx=0,x1=0,x2=b,A(0,b),B为OA的中点,b=2a,ab=-12;(2)联立两抛物线解析式可得&y=x2+ax&y=-x2-2ax,消去y整理可得2x2+3ax=0,解得x1=0,x2=-32a,当x=-32a时,y=34a2,C(-32a,34a2),过C作CDx轴于点D,如图1,D(-32a,0),OCA=90,OCDCAD,CDAD=ODCD,CD2=ADOD,即(34a2)2=-12a(-32a),a1=0(舍去),a2=233(舍去),a3=-233,OA=-2a=433,CD=34a2=1,SOAC=12OACD=233;(3)抛物线C2:y=-x2+433x,其对称轴l2:x=233,点A关于l2的对称点为O(0,0),C(3,1),则P为直线OC与l2的交点,设OC的解析式为y=kx,1=3k,得k=33,OC的解析式为y=33x,当x=233时,y=23,P(233,23);设E(m,-m2+433),(0m233),则SOBE=12233(-m2+433)=-33m2+43m,而B(233,0),C(3,1),设直线BC的解析式为y=kx+b,由&1=3k+b&0=233k+b,解得k=3,b=-2,直线BC的解析式为y=3x-2,过点E作x轴的平行线交直线BC于点N,如图2,则-m2+433m=3x-2,即x=-33m2+43m+233,EN=-33m2+43m+233-m=-33m2+13m+233,SEBC=121(-33m2+13m+233)=-36m2+16m+33S四边形OBCE=SOBE+SEBC=(-33m2+43m)+(-36m2+16m+33)=-32m2+32m+33=-32(m-32)2+17324,0m233,当m=32时,S最大=17324,当m=32时,y=-(32)2+43332=54,E(32,54),S最大=1732416、(2017阿坝州)如图,抛物线 (a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程 的两个根是x1=1,x2=3;3a+c0当y0时,x的取值范围是1x3当x0时,y随x增大而增大其中结论正确的个数是()A4个B3个C2个D1个【答案】B17、(2017阿坝州)如图,抛物线(a0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标【答案】(1);(2)(,0);(3)4,M(2,3)18、(2017广安)如图所示,抛物线y=ax2+bx+c的顶点为B(1,3),与x轴的交点A在点(3,0)和(2,0)之间,以下结论:b24ac=0;a+b+c0;2ab=0;ca=3其中正确的有()A1B2C3D4选(B)19、(2017广安)如图,已知抛物线y=x2+bx+c与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1(1)求此抛物线的解析式以及点B的坐标(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒当t为何值时,四边形OMPN为矩形当t0时,BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由【解答】解:(1)抛物线y=x2+bx+c对称轴是直线x=1,=1,解得b=2,抛物线过A(0,3),c=3,抛物线解析式为y=x2+2x+3,令y=0可得x2+2x+3=0,解得x=1或x=3,B点坐标为(3,0);(2)由题意可知ON=3t,OM=2t,P在抛物线上,P(2t,4t2+4t+3),四边形OMPN为矩形,ON=PM,3t=4t2+4t+3,解得t=1或t=(舍去),当t的值为1时,四边形OMPN为矩形;A(0,3),B(3,0),OA=OB=3,且可求得直线AB解析式为y=x+3,当t0时,OQOB,当BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,Q(2t,2t+3),OQ=,BQ=|2t3|,又由题意可知0t1,当OB=QB时,则有|2t3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t3|,解得t=;综上可知当t的值为或时,BOQ为等腰三角形20、( 2017广州)当 时,二次函数 有最小值_.21、( 2017广州) ,函数与在同一直角坐标系中的大致图象可能是( )【答案】D22、(2017毕节)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(1,0),B(4,0),C(0,4)三点,点P是直线BC下方抛物线上一动点(1)求这个二次函数的解析式;(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;21教育网(3)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,抛物线解析式为y=x23x4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,PO=PD,此时P点即为满足条件的点,C(0,4),D(0,2),P点纵坐标为2,代入抛物线解析式可得x23x4=2,解得x=(小于0,舍去)或x=,存在满足条件的P点,其坐标为(,2);(3)点P在抛物线上,可设P(t,t23t4),过P作PEx轴于点E,交直线BC于点F,如图2,B(4,0),C(0,4),直线BC解析式为y=x4,F(t,t4),PF=(t4)(t23t4)=t2+4t,SPBC=SPFC+SPFB=PFOE+PFBE=PF(OE+BE)=PFOB=(t2+4t)4=2(t2)2+8,当t=2时,SPBC最大值为8,此时t23t4=6,当P点坐标为(2,6)时,PBC的最大面积为823、(2017赤峰)如图,二次函数y=ax2+bx+c(a0)的图象交x轴于A、B两点,交y轴于点D,点B的坐标为(3,0),顶点C的坐标为(1,4)(1)求二次函数的解析式和直线BD的解析式;(2)点P是直线BD上的一个动点,过点P作x轴的垂线,交抛物线于点M,当点P在第一象限时,求线段PM长度的最大值;(3)在抛物线上是否存在异于B、D的点Q,使BDQ中BD边上的高为2?若存在求出点Q的坐标;若不存在请说明理由【解答】解:(1)抛物线的顶点C的坐标为(1,4),可设抛物线解析式为y=a(x1)2+4,点B(3,0)在该抛物线的图象上,0=a(31)2+4,解得a=1,抛物线解析式为y=(x1)2+4,即y=x2+2x+3,点D在y轴上,令x=0可得y=3,D点坐标为(0,3),可设直线BD解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=1,直线BD解析式为y=x+3;(2)设P点横坐标为m(m0),则P(m,m+3),M(m,m2+2m+3),PM=m2+2m+3(m+3)=m2+3m=(m)2+,当m=时,PM有最大值;(3)如图,过Q作QGy轴交BD于点G,交x轴于点E,作QHBD于H,设Q(x,x2+2x+3),则G(x,x+3),QG=|x2+2x+3(x+3)|=|x2+3x|,BOD是等腰直角三角形,DBO=45,HGQ=BGE=45,当BDQ中BD边上的高为2时,即QH=HG=2,QG=2=4,|x2+3x|=4,当x2+3x=4时,=9160,方程无实数根,当x2+3x=4时,解得x=1或x=4,Q(1,0)或(4,5),综上可知存在满足条件的点Q,其坐标为(1,0)或(4,5)24、(2017鄂州)已知二次函数y = (x+m)2 - n的图象如图所示,则一次函数y = mx + n 与反比例函数 的图象可能是( )A. B. C. D. 【答案】C25、(2017鄂州)如图抛物线y=ax2+bx+c的图象交x轴于A(2,0)和点B,交y轴负半轴于点C,且OB =OC. 下列结论:2b-c=2;a=;ac=b-1;0.其中正确的个数有( )A1个 B2个 C3个 D4个【答案】C26、(2017鄂州)已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线 向下平移m个单位(m 0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是 .【答案】2m827、(2017鄂州)(本题满分10分)鄂州某个体商户购进某种电子产品的进价是50元/个,根据市场调研发现售价是80元/个时,每周可卖出160个.若销售单价每个降低2元,则每周可多卖出20个.设销售价格每个降低x元(x为偶数),每周销售量为y个.(1)直接写出销售量y个与降价x元之间的函数关系式;(2)设商户每周获得的利润为W元,当销售单价定为多少元时,每周销售利润最大,最大利润是多少元?(3)若商户计划下周利润不低于5200元的情况下,他至少要准备多少元进货成本?【答案】(1)y=10x+160(2)当销售单价为72元或74元时,每周销售利润最大,最大为5280元(3)该个体商户至少要准备10000元进货成本 【解析】由题意知得自变量x取值范围二次函数对称轴x为偶数当x=6或8时,有最大值为5280.此时销售单价为80-6=74或80-8=72.即当销售单价为72元或74元时,每周销售利润最大,最大为5280元.28、(2017鄂州)(本题满分12分)已知,抛物线(a 0 )与x轴交于A(3,0)、B两点,与y轴交于点C. 抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE =.(1)求抛物线的解析式及顶点D的坐标;(2)求证:直线DE是ACD外接圆的切线;(3)在直线AC上方的抛物线上找一点P,使,求点P的坐标;(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与ACD相似,直接写出点M的坐标.【答案】(1),D(1,4)(2)证明见解析(3),(4)(3,0)(0,-3) 【解析】 当 =1时,y=4顶点D(1,4). (2)当 x=0时,y=3点C的坐标为(0,3)A(3,0),D(1,4) ACD为直角三角形,ACD=90.AD为ACD外接圆的直径点E在 轴C点的上方,且CE = .DE是ACD外接圆的切线 (此问中用相似证ADE =90亦可)(3)A(3,0),D(1,4),C(0,3)29、(2017贵阳)已知二次函数y=ax2+bx+c(a0)的图象如图所示,以下四个结论:a0;c0;b24ac0;0,正确的是()ABCD选C30、(2017佳木斯)如图,RtAOB的直角边OA在x轴上,OA=2,AB=1,将RtAOB绕点O逆时针旋转90得到RtCOD,抛物线y=x2+bx+c经过B、D两点(1)求二次函数的解析式;(2)连接BD,点P是抛物线上一点,直线OP把BOD的周长分成相等的两部分,求点P的坐标【解答】解:(1)RtAOB绕点O逆时针旋转90得到RtCOD,CD=AB=1、OA=OC=2,则点B(2,1)、D(1,2),代入解析式,得:,解得:,二次函数的解析式为y=x2+x+;(2)如图,直线OP把BOD的周长分成相等的两部分,且OB=OD,DQ=BQ,即点Q为BD的中点,点Q坐标为(,),设直线OP解析式为y=kx,将点Q坐标代入,得: k=,解得:k=3,直线OP的解析式为y=3x,代入y=x2+x+,得: x2+x+=3x,解得:x=1或x=4(舍),当x=1时,y=3,点P坐标为(1,3)31、(2017安顺二次函数y=ax2+bx+c(0)的图象如图,给出下列四个结论:4acb20;3b+2c0;4a+c2b;m(am+b)+ba(m1),其中结论正确的个数是()21cnjyA1B2C3D4【答案】B32、(2017安顺如图甲,直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P2-1-c-n-j-y(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;21教育名师原创作品(3)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图乙、丙供画图探究)试题解析:(1)直线y=x+3与x轴、y轴分别交于点B、点C,B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,抛物线解析式为y=x24x+3;(2)y=x24x+3=(x2)21,抛物线对称轴为x=2,P(2,1),设M(2,t),且C(0,3),MC=,MP=|t+1|,PC=,CPM为等腰三角形,有MC=MP、MC=PC和MP=PC三种情况,当MC=MP时,则有=|t+1|,解得t=,此时M(2,);当MC=PC时,则有=2,解得t=1(与P点重合,舍去)或t=7,此时M(2,7);当MP=PC时,则有|t+1|=2,解得t=1+2或t=12,此时M(2,1+2)或(2,12);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,1+2)或(2,12);(3)如图,过E作EFx轴,交BC于点F,交x轴于点D,设E(x,x24x+3),则F(x,x+3),0x3,EF=x+3(x24x+3)=x2+3x,SCBE=SEFC+SEFB=EFOD+EFBD=EFOB=3(x2+3x)=(x)2+,当x=时,CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,CBE的面积最大33、(2017海南)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0)(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PMy轴,分别与x轴和直线CD交于点M、N连结PC、PD,如图1,在点P运动过程中,PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;连结PB,过点C作CQPM,垂足为点Q,如图2,是否存在点P,使得CNQ与PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由【解答】解:(1)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),解得该抛物线对应的函数解析式为;(2)点P是抛物线上的动点且位于x轴下方,可设P(t,)(1t5),直线PMy轴,分别与x轴和直线CD交于点M、N,M(t,0),N(t,),PN=.联立直线CD与抛物线解析式可得,解得或,C(0,3),D(7,),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7t,SPCD=SPCN+SPDN=PNCE+PNDF=PN= ,当t=时,PCD的面积有最大值,最大值为;存在CQN=PMB=90,当CNQ与PBM相似时,有或两种情况,CQPM,垂足为Q,Q(t,3),且C(0,3),N(t,),CQ=t,NQ=3=,P(t,),M(t,0),B(5,0),BM=5t,PM=0()=,当时,则PM=BM,即,解得t=2或t=5(舍去),此时P(2,);当时,则BM=PM,即5t=(),解得t=或t=5(舍去),此时P(,);综上可知存在满足条件的点P,其坐标为P(2,)或(,)34、(2017呼和浩特)在平面直角坐标系xOy中,抛物线y=ax2+bx+c与y轴交于点C,其顶点记为M,自变量x=1和x=5对应的函数值相等若点M在直线l:y=12x+16上,点(3,4)在抛物线上(1)求该抛物线的解析式;(2)设y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,在x轴上有一点A(,0),试比较锐角PCO与ACO的大小(不必证明),并写出相应的P点横坐标x的取值范围(3)直线l与抛物线另一交点记为B,Q为线段BM上一动点(点Q不与M重合),设Q点坐标为(t,n),过Q作QHx轴于点H,将以点Q,H,O,C为顶点的四边形的面积S表示为t的函数,标出自变量t的取值范围,并求出S可能取得的最大值【解答】解:(1)自变量x=1和x=5对应的函数值相等,抛物线的对称轴为x=2点M在直线l:y=12x+16上,yM=8设抛物线的解析式为y=a(x2)28将(3,4)代入得:a8=4,解得:a=4抛物线的解析式为y=4(x2)28,整理得:y=4x216x+8(2)由题意得:C(0,8),M(2,8),如图,当PCO=ACO时,过P作PHy轴于H,设CP的延长线交x轴于D,则ACD是等腰三角形,OD=OA=,P点的横坐标是x,P点的纵坐标为4x216x+8,PHOD,CHPCOD,x=,过C作CEx轴交抛物线与E,则CE=4,设抛物线与x轴交于F,B,则B(2+,0),y=ax2+bx+c对称轴右侧x轴上方的图象上任一点为P,当x=时,PCO=ACO,当2+x时,PCOACO,当x4时,PCOACO;(3)解方程组,解得:,D(1,28),Q为线段BM上一动点(点Q不与M重合),Q(t,12t+16)(1t2),当1t0时,S=(t)(12t+168)+8(t)=6t212t=6(t1)26,21教育网1t0,当t=1时,S最大=18;当0t时,S=t8+t(12t+16)=6t2+12t=6(t1)2+6,0t,当t=1时,S最大=6;当t2时,S=t8+(12t16)=6t24t=6(t)2,t2,此时S为最大值35、(2017葫芦岛)“五一”期间,恒大影城隆重开业,影城每天运营成本为1000元,试营业期间统计发现,影城每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数:y=4x+220(10x50,且x是整数),设影城每天的利润为w(元)(利润=票房收入运营成本)(1)试求w与x之间的函数关系式;(2)影城将电影票售价定为多少元/张时,每天获利最大?最大利润是多少元?试题解析:(1)根据题意,得:w=(4x+220)x1000=4x2+220x1000;(2)w=4x2+220x1000=4(x27.5)2+2025,当x=27或28时,w取得最大值,最大值为2024,答:影城将电影票售价定为27或28元/张时,每天获利最大,最大利润是2024元36、(2017葫芦岛)如图,抛物线y=ax22x+c(a0)与x轴、y轴分别交于点A,B,C三点,已知点A(2,0),点C(0,8),点D是抛物线的顶点(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将EBP沿直线EP折叠,使点B的对应点B落在抛物线的对称轴上,求点P的坐标;(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标试题解析:(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=8抛物线的解析式为y=x22x8y=(x1)29,D(1,9)(2)将y=0代入抛物线的解析式得:x22x8=0,解得x=4或x=2,B(4,0)y=(x1)29,抛物线的对称轴为x=1,E(1,0)将EBP沿直线EP折叠,使点B的对应点B落在抛物线的对称轴上,EP为BEF的角平分线BEP=45设直线EP的解析式为y=x+b,将点E的坐标代入得:1+b=0,解得b=1,直线EP的解析式为y=x+1将y=x+1代入抛物线的解析式得:x+1=x22x8,解得:x=或x=点P在第四象限,x=y=P(,)(3)设CD的解析式为y=kx8,将点D的坐标代入得:k8=9,解得k=1,直线CD的解析式为y=x8设直线CB的解析式为y=k2x8,将点B的坐标代入得:4k28=0,解得:k2=2直线BC的解析式为y=2x8将x=1代入直线BC的解析式得:y=6,F(1,6)设点M的坐标为(a,a8)当MF=MB时,(a4)2+(a+8)2=(a1)2+(a+2)2,整理得:6a=75,解得:a=点M的坐标为(,)当FM=FB时,(a1)2+(a+2)2=(41)2+(60)2,整理得:a2+a20=0,解得:a=4或a=5点M的坐标为(4,12)或(5,3)综上所述,点M的坐标为(,)或(4,12)或(5,3)37、(2017常德)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()Ay=2(x3)25By=2(x+3)2+5Cy=2(x3)2+5Dy=2(x+3)25选A38、(2017常德)如图,正方形EFGH的顶点在边长为2的正方形的边上若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为y=2x24x+439、(2017常德)如图,已知抛物线的对称轴是y轴,且点(2,2),(1,)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作PAx轴于A,PCy轴于C,延长PC交抛物线于E,设M是O关于抛物线顶点N的对称点,D是C点关于N的对称点(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:DPEPAM,并求出当它们的相似比为时的点P的坐标【解答】(1)解:抛物线的对称轴是y轴,可设抛物线解析式为y=ax2+c,点(2,2),(1,)在抛物线上,解得,抛物线解析式为y=x2+1,N点坐标为(0,1);(2)证明:设P(t, t2+1),则C(0, t2+1),PA=t2+1,M是O关于抛物线顶点N的对称点,D是C点关于N的对称点,且N(0,1),M(0,2),OC=t2+1,ON=1,DM=CN=t2+11=t2,OD=t21,D(0,t2+1),DM=2(t2+1)=t2+1=PA,且PMDM,四边形PMDA为平行四边形;(3)解:同(2)设P(t, t2+1),则C(0, t2+1),PA=t2+1,PC=|t|,M(0,2),CM=t2+12=t21,在RtPMC中,由勾股定理可得PM=t2+1=PA,且四边形PMDA为平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 玉米原材料采购合同范本
- 村委建设补偿协议书范本
- 禁止学生喝酒安全协议书
- 浦东同城厂房出租协议书
- 材料商玻璃采购合同范本
- 自建房套间出售合同范本
- 防晒服定制采购合同范本
- 注册人员聘用协议书范本
- 空压机节能方案合同范本
- 股东协议书与代持协议书
- 龋齿护理健康教育
- 研学旅行指导师笔试试题及答案
- 人工智能技术合同
- 2025年人教版八年级物理下学期期末复习:力、运动和力、压强、浮力(考点清单)学生版+解析
- 2025至2030中国矿用排水泵行业深度研究及发展前景投资评估分析
- 2025届北京市十一所学校物理高一下期末监测试题含解析
- 小学英语-三年级升四年级英语阅读理解专项(附答案)
- 2025年高考真题-政治(云南卷) 含答案
- 学堂在线 生活英语进阶 章节测试答案
- 党徽党旗条例全面解读
- 2025至2030中国原煤行业市场深度发展趋势与前景展望战略报告
评论
0/150
提交评论