Canny_算子边缘检测.ppt_第1页
Canny_算子边缘检测.ppt_第2页
Canny_算子边缘检测.ppt_第3页
Canny_算子边缘检测.ppt_第4页
Canny_算子边缘检测.ppt_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Canny 算子边缘检测 韩慧丽 09080202095 机械电子工程 图像边缘 图像边缘是指图像中灰度有显著变化的像 素点的集合,从信号研究的频域角度而言 ,这些像素点信息属于高频信号区域;图 像边缘往往都是闭合的连线。 噪声也属于高频信号,图像处理之前需要 先经过去噪,去噪处理后会对图像真实的 边缘信息造成一定的影响。 许多经典的算法很难同时兼顾这两点:去 噪同时不损坏边缘信息。 边缘检测 平滑图像、去除噪声,主要基于导数计算,但是同时会 减弱一定的边缘信息; 求梯度值, 梯度幅度值判定,初步确定图像边缘点,有时某些梯度 幅度值较大点并不一定是边缘点,例如纹理图像; 精确定位边缘位置 边缘提取要求输出的是一个二值化图像,只有黑白两个 灰度,一个表示边缘,另一个表示背景,最后还需要把 边缘细化成只有一个像素的高度,使效果更清晰。 滤波增强检测定位 边缘检测算法 传统的边缘检测算子:Sobel算子,Prewitt算子,Roberts 算子,Krich算子等,大部分处理的效果都不很好,实际处理 中不太实用,而Canny算子检测的性能较好,常被作为其他实 验的标准来参考。Canny算子是John Canny在1986年发表的论 文中首次提出的一种边缘检测算法,当时弥补了其他算法的不 太好的缺点,因此Canny算子被认为是边缘检测领域较好的算 法,并一直被引用,近几年来,随着研究的深入,性能更加完 善的改性型的Canny算子也层出不穷,例如自适应Canny算子等 。 用一句话说,就是希望在提高对景物边缘的敏感性的同时,可 以抑制噪声的方法才是好的边缘提取方法。 Canny算子详细原理 lCanny算子检测边缘的实质是求信号函数的极大值问 题来判定图像边缘像素点。 l算子三大准则: 好的检测性能:检测出的边缘信息的漏检率最小, 误检率最小,评判参数信噪比SNR越大越好 G(-x)表示图像边函数 f(x)滤波器函数 表示噪声的均方差 高的定位精度:Location越大越好 边缘响应次数最少:要保证只有一个像素响应,检 测算子的脉冲响应导数的零交叉点平均距离D(f)满 足 Canny算子详细原理 通过以上算式得出算子的近似实现:边缘点位于图 像被高斯平滑后的梯度值的极大值点。 算法过程 原始图像 A(x,y) B(x,y) 偏导 (Bx,By) 初步得到 边缘点 高斯平 滑去噪 求导 图像边缘 极大 值抑 制非 双阈值检测 连结边缘 详细算法过程 I.高斯函数 I.偏导数:使用微分算子求出偏导数 非极大值抑制: 沿幅角方向检测模值的极大值点,即边缘点, 遍历8个方向图像像素,把每个像素偏导值与相 邻像素的模值比较,取其MAX值为边缘点,置像 素灰度值为0. 0 1 2 3 4 5 6 7 边缘方向示意图 432 1B1 234 8邻域幅角方向 双阈值检测: 由于单阈值处理时,合适的阈值选择较 困难,常常需要采 用反复试验,因此采用双阈值检测算法。 对经过非极大值抑制后的图像作用两个阈值th1,th2, th1=0.4th2,两个阈值作用后得到两个图像1、2,较大阈值 检测出的图像2去除了大部分噪声,但是也损失了有用的边 缘信息。 较小阈值检测得到的图像1则保留着较多的边缘信息,以此 为基础,补充图像2中的丢失的信息,连接图像边缘。 链接边缘的具体步骤如下: 对图像2进行扫描,当遇到一个非零灰度的像素p(x,y)时, 跟踪以p(x,y)为开始点的轮廓线,直到轮廓线的终点q(x,y) 。 考察图像1中与图像2中q(x,y)点位置对应的点s(x,y)的8邻 近区域。如果在s(x,y)点的8邻近区域中有非零像素s(x,y) 存在,则将其包括到图像2中,作为r(x,y)点。从r(x,y)开 始,重复第一步,直到我们在图像1和图像2中都无法继续为 止。 当完成对包含p(x,y)的轮廓线的连结之后,将这条轮廓线标 记为已经访问。回到第一步,寻找下一条轮廓线。重复第一 步、第二步、第三步,直到图像2中找不到新轮廓线为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论