全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设,(1)若A,则有,使得当时,;(2)若有使得当时,。2. 极限分为函数极限、数列极限,其中函数极限又分为时函数的极限和的极限。要特别注意判定极限是否存在在:(1)数列是它的所有子数列均收敛于a。常用的是其推论,即“一个数列收敛于a的充要条件是其奇子列和偶子列都收敛于a”(2)(3) (4) 单调有界准则(5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限存在的充分必要条件。是:二解决极限的方法如下:1.等价无穷小代换。只能在乘除时候使用。例题略。2.洛必达(Lhospital)法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:(1)“”“”时候直接用(2)“”“”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即;(3)“”“”“”对于幂指函数,方法主要是取指数还取对数的方法,即,这样就能把幂上的函数移下来了,变成“”型未定式。3.泰勒公式(含有的时候,含有正余弦的加减的时候) ; cos=ln(1+x)=x-(1+x)=以上公式对题目简化有很好帮助4.两多项式相除:设,P(x)=, (1)(2)若,则5.无穷小与有界函数的处理办法。例题略。面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。6.夹逼定理:主要是应用于数列极限,常应用放缩和扩大不等式的技巧。以下面几个题目为例:(1)设,求 解:由于,由夹逼定理可知 (2)求 解:由,以及可知,原式=0 (3)求解:由,以及得,原式=17.数列极限中等比等差数列公式应用(等比数列的公比q绝对值要小于1)。例如: 求 。提示:先利用错位相减得方法对括号内的式子求和。8.数列极限中各项的拆分相加(可以使用待定系数法来拆分化简数列)。例如: =9.利用极限相同求极限。例如: (1)已知,且已知存在,求该极限值。 解:设=A,(显然A)则,即,解得结果并舍去负值得A=1+ (2)利用单调有界的性质。利用这种方法时一定要先证明单调性和有界性。例如 设 解:(i)显然(ii)假设则,即。所以,是单调递增数列,且有上界,收敛。设,(显然则,即。解方程并舍去负值得A=2.即 10.两个重要极限的应用。 (1) 常用语含三角函数的“” 型未定式(2),在“”型未定式中常用11.还有个非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的,快于n!,n!快于指数型函数(b为常数),指数函数快于幂函数,幂函数快于对数函数。当x趋近无穷的时候,它们比值的极限就可一眼看出。12.换元法。这是一种技巧,对一道题目而言,不一定就只需要换元,但是换元会夹杂其中。例如:求极限。解:设。原式=13利用定积分求数列极限。例如:求极限。由于,所以14.利用导数的定义求“”型未定式极限。一般都是x0时候,分子上是“”的形式,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年高端私人影院建设公司物流运输管理制度
- 抑郁症常见症状及护理方法分析
- 类风湿性心脏病的症状识别及护理注意事项
- 2025-2026学年安徽省县中联盟高二上学期10月联考地理试题(解析版)
- 综合性应急消防救援队伍训词精神
- 2025-2026学年福建省泉州市高三上学期开学检测历史试题
- 2024-2025学年浙江省金砖联盟高一上学期期中联考地理试题(解析版)
- 钻孔操作方法规范
- 2026中水北方勘测设计研究有限责任公司校园招聘(第一批)终面笔试考试参考题库及答案解析
- 2025广东茂名市化州市司法局招聘镇(街道)专职人民调解员2人考试笔试参考题库附答案解析
- 保险专业代理机构高级管理人员任职资格申请表
- 法学概论(第七版) 课件全套 谷春德 第1-7章 我国社会主义法的基本理论 - 国际法
- 产业经济学第四版教学课件第十三章 行业自律
- 《网络空间安全概论》课件7-1-2人工智能安全
- 第八课+法治中国建设+高中政治统编版必修三
- 软件工程中的软件部署与运维指南
- 道路运输企业两类人员安全考核题库(含答案)
- 下肢深静脉血栓护理业务学习
- 房地产管理-华中科技大学中国大学mooc课后章节答案期末考试题库2023年
- 中华碑帖精粹:赵孟頫胆巴碑
- 教师职业道德与专业发展知到章节答案智慧树2023年山东师范大学
评论
0/150
提交评论