WJF8-1微分方程的基本概念.ppt_第1页
WJF8-1微分方程的基本概念.ppt_第2页
WJF8-1微分方程的基本概念.ppt_第3页
WJF8-1微分方程的基本概念.ppt_第4页
WJF8-1微分方程的基本概念.ppt_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

8.1 微分方程的基本概念 问题的提出 微分方程基本概念 微分方程的解 小结 思考题 解 一、问题的提出 解 代入条件后知 开始制动到列车完全停住共需 列车在这段时间内行驶了 如 二、微分方程的定义二、微分方程的定义 一般的,表示自变量、未知函数及未知函数的导数(或微分) 导数的阶数称为微分方程的阶。 微分方程的阶: 微分方程中出现的未知函数的最高阶 的关系式,称为微分方程。 自变量的个数只有一个,称这种为常微分方程; 自变量的个数为两个以上,称这种为偏微分方程。 一阶微分方程 阶微分方程 在微分方程中, 三、微分方程的解三、微分方程的解 微分方程的解:代入微分方程能使方程成为恒等式的 函数称为微分方程的解. 微分方程的解中含有任意常数,且任意常数的个数与 微分方程的阶数相同,这样的解称为微分方程的通解。 确定了通解中任意常数以后的解,称为微分方程的特解。 用来确定任意常数的条件,称为初始条件。 一阶: 二阶: 解 所求特解为 小结小结 微分方程;微分方程的阶; 微分方程的解:通解,特解 初始条件 思考题思考题 同为微分方程的解,特解和通解有何不同?同为微分方程的解,特解和通解有何不同? 思考题解答思考题解答 特解和通解都是微分方程的解,但是通

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论