工艺安全信息.doc_第1页
工艺安全信息.doc_第2页
工艺安全信息.doc_第3页
工艺安全信息.doc_第4页
工艺安全信息.doc_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

企业操作人员应掌握工艺安全信息1、信息包括:物理特性;化学特性;毒性;职业接触限值。2、流程图:化学反应过程;最大储存量;工艺参数(包括:压力、流量、温度的安全上下值。3、设备信息:如设备材料、安全设施(如报警器、连锁装置等)。、【注:1、企业有关人员应掌握半水煤气、氨、氢气、一氧化碳、二氧化碳、二氧化硫、硫化氢、氮气、氢氧化钠、硫酸、盐酸等化学品的物理性数据、活性数据、热和化学稳定性数据、腐蚀性数据、毒性信息、职业接触限值、急救和消防措施等工艺安全信息内容。2、企业应对装置正常运行过程中的各项工艺参数进行严格控制,安全工艺参数至少满足: a) 气柜出入口管线氧含量0.005(体积分数);b) 气化炉氧油比0.850.90;c) 回收吹风气燃烧炉上段温度750;d) 高压甲醇塔、烷化塔、提温换热器、氨合成塔塔壁温度120;e) 尿素合成塔出口物料含镍量0.2 ppm;f) 入尿素塔二氧化碳气体中氧含量:0.0040.006(体积分数);g) 液氨贮槽充装量禁止超过贮槽容积的85,粗甲醇贮槽最大充装量不得超过90%。】目 录半水煤气工艺安全信息内容氨工艺安全信息内容一氧化碳工艺安全信息内容盐酸工艺安全信息内容氢氧化钠工艺安全信息内容半水煤气工艺安全信息内容水煤气是通过炽热的焦炭而生成的气体,主要成份是一氧化碳 ,氢气 ,燃烧后排放水和二氧化碳,有微量CO、HC和NOX。燃烧速度是汽油的7.5倍,抗爆性好,据国外研究和专利的报导压缩比可达12.5。热效率提高2040、功率提高15、燃耗降低30,尾气净化近欧IV标准 ,还可用微量的铂催化剂净化。比醇、醚简化制造和减少设备,成本和投资更低。压缩或液化与氢气相近,但不用脱除CO,建站投资较低。还可用减少的成本和投资部分补偿压缩(制醇醚也要压缩)或液化的投资和成本。有毒,工业上用作燃料,又是化工原料。制作方法将水蒸气通过炽热的煤层可制得较洁净的水煤气(主要成分是CO和H2),现象为火焰腾起更高,而且变为淡蓝色(氢气和CO燃烧的颜色)。化学方程式为C+H2O=(高温)CO+H2。这就是湿煤比干煤燃烧更旺的原因。 煤气厂常在家用水煤气中特意掺入少量难闻气味的气体,目的是CO和H2为无色无味气体,当煤气泄漏时能闻到及时发现。甲烷和水也可制 水煤气化学方程式为CH4+H2O=CO+3H2 另: 一种低热值煤气。由蒸汽与灼热的无烟煤或焦炭作用而得。主要成分为氢气和一氧化碳,也含有少量二氧化碳、氮气和甲烷等组分;各组分的含量取决于所用原料及气化条件。主要用作合成氨、合成液体燃料等的原料,或作为工业燃料气的补充来源。 工业上,水煤气的生产一般采用间歇周期式固定床生产技术。炉子结构采用UGI气化炉的型式。在气化炉中,碳与蒸汽主要发生如下的水煤气反应: C+H2O=(高温)CO+H2 C+2H2O=(高温)CO2+2H2 以上反应均为吸热反应,因此必须向气化炉内供热。通常,先送空气入炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室里,然后将蒸汽通入灼热的燃料层进行反应。由于反应吸热,燃料层及蓄热室温度下降至一定温度时,又重新送空气入炉升温,如此循环。当目的是生产燃料气时,为了提高煤气热值,有时提高出炉煤气温度,借以向热煤气中喷入油类,使油类裂解,即得所谓增热水煤气。 用途气体燃料的一种。主要成分是氢和一氧化碳。由水蒸气和赤热的无烟煤或焦炭作用而得。工业上大多用蒸气和空气轮流吹风的间歇法,或用蒸气和氧一起吹风的连续法。热值约为10500千焦/标准立方米。此外,尚有用蒸气和空气一起吹风所得的“半水煤气”。可作为燃料,或用作合成氨、合成石油、有机合成、氢气制造等的原料。 近年来,正在开发高温气冷堆的技术,用氦为热载体将核反应热转送至气化炉作为热源,以生产水煤气。 安全隐患但水煤气存在着许多隐患,水煤气发生炉长期运行后极易产生大量硫化氢、焦油、酚水等污染物,影响半径达500米,对农作物、空气环境和人体等都有较大的损害。它产生的多种废气和恶臭,会引起人头痛、头晕,居民根本受不了。此外,由于水煤气主要由一氧化碳、氢气等易燃气体组成,一旦泄漏,则极可能发生爆炸和中毒,造成群死群伤事件。 对于水煤气中的硫化氢,在其后煤气燃烧后会转化为二氧化硫和水,因此,在燃煤气的炉窑中燃烧后尾气中有二氧化硫,需要脱硫处理,但是目前使用的较少。 另: 一种低热值煤气。由蒸汽与灼热的无烟煤或焦炭作用而得。主要成分为氢气和一氧化碳,也含有少量二氧化碳、氮气和甲烷等组分;各组分的含量取决于所用原料及气化条件。主要用作台成氨、合成液体燃料等的原料,或作为工业燃料气的补充来源。 工业上,水煤气的生产一般采用间歇周期式固定床生产技术。炉子结构采用UGI气化炉的型式。在气化炉中,碳与蒸汽主要发生如下的水煤气反应: C+H2O=(高温)CO+H2 C+2H2O=(高温)CO2+2H2 以上反应均为吸热反应,因此必须向气化炉内供热。通常,先送空气入炉,烧掉部分燃料,将热量蓄存在燃料层和蓄热室里,然后将蒸汽通入灼热的燃料层进行反应。由于反应吸热,燃料层及蓄热室温度下降至一定温度时,又重新送空气入炉升温,如此循环。当目的是生产燃料气时,为了提高煤气热值,有时提高出炉煤气温度,借以向热煤气中喷入油类,使油类裂解,即得所谓增热水煤气。氨的工艺安全信息内容氨(Ammonia,即阿摩尼亚),或称“氨气”,分子式为NH3,是一种无色气体,有强烈的刺激气味。极易溶于水,常温常压下1体积水可溶解700倍体积氨。氨对地球上的生物相当重要,它是所有食物和肥料的重要成分。氨也是所有药物直接或间接的组成。氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。由于氨可以提供孤对电子,所以它也是一种路易斯碱。物理性质氨气通常情况下是有刺激性气味的无色气体,密度比空气小,极易溶于水,易液化,液氨可作制冷剂。以700:1的溶解度溶于水。 摩尔质量:17.0306 CAS: 7664-41-7 密度:0.6942 熔点:-77.73 C 沸点:-33.34 C 在水中溶解度:89.9 g/100 mL, 0 C 偶极距:1.42 D 主要化学性质1、NH3遇HCl气体有白烟产生,可与氯气反应。 2、氨水(混称氢氧化铵,NH3H2O)可腐蚀许多金属,一般若用铁桶装氨水,铁桶应内涂沥青。 3、氨的催化氧化是放热反应,产物是NO,是工业制硝酸的重要反应,NH3也可以被氧化成N2。 4、NH3能使湿润的紫色石蕊试纸变蓝。 在水中产生少量氢氧根离子,呈弱碱性. 主要用途NH3用于制氨水、液氨、氮肥(尿素、碳铵等)、HNO3、铵盐、纯碱,广泛应用于化工、轻工、化肥、制药、合成纤维、塑料、染料、制冷剂等。 催化剂的中毒催化剂的催化能力一般称为催化活性。有人认为:由于催化剂在反应前后的化学性质和质量不变,一旦制成一批催化剂之后,便可以永远使用下去。实际上许多催化剂在使用过程中,其活性从小到大,逐渐达到正常水平,这就是催化剂的成熟期。接着,催化剂活性在一段时间里保持稳定,然后再下降,一直到衰老而不能再使用。活性保持稳定的时间即为催化剂的寿命,其长短因催化剂的制备方法和使用条件而异。 催化剂在稳定活性期间,往往因接触少量的杂质而使活性明显下降甚至被破坏,这种现象称为催化剂的中毒。一般认为是由于催化剂表面的活性中心被杂质占据而引起中毒。中毒分为暂时性中毒和永久性中毒两种。例如,对于合成氨反应中的铁催化剂,O2、CO、CO2和水蒸气等都能使催化剂中毒。但利用纯净的氢、氮混合气体通过中毒的催化剂时,催化剂的活性又能恢复,因此这种中毒是暂时性中毒。相反,含P、S、As的化合物则可使铁催化剂永久性中毒。催化剂中毒后,往往完全失去活性,这时即使再用纯净的氢、氮混合气体处理,活性也很难恢复。催化剂中毒会严重影响生产的正常进行。工业上为了防止催化剂中毒,要把反应物原料加以净化,以除去毒物,这样就要增加设备,提高成本。因此,研制具有较强抗毒能力的新型催化剂,是一个重要的课题。 血氨增高原因血氨清除不足 肝内鸟氨酸循环合成尿素是机体清除氨的主要代谢途径。当供给鸟氨酸循环的ATP不足,催化鸟氨酸循环的有关酶的活性降低,其循环所需底物严重缺乏,以及肠道吸收的氨经门体分流直接进入循环等多个环节2作用,最终导致血氨的增高。 血氨生成增多 1.肠道产氨增多 肝病致吸收不良,血液循环不畅、胆汁水泌不够,食物消化不良致大量细菌繁殖增生,作用于肠道积聚的蛋白质及尿素,使产氨明显增多。2.肾衰致血液中的尿素等非蛋白氮含量高于正常,因而弥散至肠腔内的尿素大大增加,使产氨增多。3.烦躁不安、震颤等肌肉活动增强,使肌肉中的腺苷酸分解代谢增强,也是血氨产生增多的原因之一。 肠道PH降低尿液PH值升高 尿液中PH升高,则进入肾小管腔的NH3与H结合减少,则NH3以氨根离子的形式随尿排出的形式减少,致血氨升高。 肠道PH降低,氨根离子易于H结合生成NH3,而不易随粪便排出,使其吸收增加,致血氨浓度升高。 氨中毒机理1.氨能够干扰脑细胞的能量代谢 氨抑制丙酮酸脱羧酶的活性,使乙酰CoA生成减少,影响三羧酸循环的正常进行;消耗大量 酮戊二酸和还原型辅酶 ,造成ATP生成不足;氨与谷氨酸结合生成谷氨酰胺的过程中大量消耗ATP。总之,氨耗大是ATP,又使得脑细胞ATP生成减少以抑制脑细胞。 2.脑内神经递质的改变 氨引起脑内谷氨酸、Ach等兴奋神经递质的减少,又使谷氨酰胺、氨基丁酸等抑制性神经递质增多,从而造成对中枢神经系统的抑制。 3.对神经细胞的抑制作用 NH3干扰神经细胞膜上的Na- K-ATP酶,使复极后膜离子转动障碍,导致膜电位改变和兴奋性异常;NH3与K有竞争作用,影响Na K 在神经的细胞膜上的正常分布,从而干扰神经传导活动。 综上,氨中毒主要抑制中枢神经系统,正常情况下,中枢神经系统能够抑制外周的低级中枢,当中枢神经系统受抑制,使得其对外周低级中枢的抑制作用减弱甚至消失,从而外周低级中枢兴奋,出现一系列如肌随意性兴奋、角弓反射及抽搐等本能反应。 氨的职业危害与预防(1)吸入的危害表现。 氨的刺激性是可靠的有害浓度报警信号。但由于嗅觉疲劳,长期接触后对低浓度的氨会难以察觉。吸入是接触的主要途径,吸入氨气后的中毒表现主要有以下几个方面。 轻度吸入氨中毒表现有鼻炎、咽炎、喉痛、发音嘶哑。氨进入气管、支气管会引起咳嗽、咯痰、痰内有血。严重时可咯血及肺水肿,呼吸困难、咯白色或血性泡沫痰,双肺布满大、中水泡音。患者有咽灼痛、咳嗽、咳痰或咯血、胸闷和胸骨后疼痛等。 急性吸入氨中毒的发生多由意外事故如管道破裂、阀门爆裂等造成。急性氨中毒主要表现为呼吸道粘膜刺激和灼伤。其症状根据氨的浓度、吸入时间以及个人感受性等而轻重不同。 急性轻度中毒:咽干、咽痛、声音嘶哑、咳嗽、咳痰,胸闷及轻度头痛,头晕、乏力,支气管炎和支气管周围炎。 急性中度中毒上述症状加重,呼吸困难,有时痰中带血丝,轻度发绀,眼结膜充血明显,喉水肿,肺部有干湿性哕音。 急性重度中毒:剧咳,咯大量粉红色泡沫样痰,气急、心悸、呼吸困难,喉水肿进一步加重,明显发绀,或出现急性呼吸窘迫综合症、较重的气胸和纵隔气肿等。 严重吸入中毒可出现喉头水肿、声门狭窄以及呼吸道粘膜脱落,可造成气管阻塞,引起窒息。吸入高浓度的氨可直接影响肺毛细血管通透性而引起肺水肿,可诱发惊厥、抽搐、嗜睡、昏迷等意识障碍。个别病人吸入极浓的氨气可发生呼吸心跳停止。 (2)皮肤和眼睛接触的危害表现。 低浓度的氨对眼和潮湿的皮肤能迅速产生刺激作用。潮湿的皮肤或眼睛接触高浓度的氨气能引起严重的化学烧伤。急性轻度中毒:流泪、畏光、视物模糊、眼结膜充血。 皮肤接触可引起严重疼痛和烧伤,并能发生咖啡样着色。被腐蚀部位呈胶状并发软,可发生深度组织破坏。 高浓度蒸气对眼睛有强刺激性,可引起疼痛和烧伤,导致明显的炎症并可能发生水肿、上皮组织破坏、角膜混浊和虹膜发炎。轻度病例一般会缓解,严重病例可能会长期持续,并发生持续性水肿、疤痕、永久性混浊、眼睛膨出、白内障、眼睑和眼球粘连及失明等并发症。多次或持续接触氨会导致结膜炎。 2 急救措施 (1)清除污染。 如果患者只是单纯接触氨气,并且没有皮肤和眼的刺激症状,则不需要清除污染。假如接触的是液氨,并且衣服已被污染,应将衣服脱下并放入双层塑料袋内。 如果眼睛接触或眼睛有刺激感,应用大量清水或生理盐水冲洗20min以上。如在冲洗时发生眼睑痉挛,应慢慢滴入12滴0.4奥布卡因,继续充分冲洗。如患者戴有隐形眼镜,又容易取下并且不会损伤眼睛的话,应取下隐形眼镜。 对接触的皮肤和头发用大量清水冲洗15min以上。冲洗皮肤和头发时要注意保护眼睛。 (2)病人复苏。 应立即将患者转移出污染区,至空气新鲜处,对病人进行复苏三步法(气道、呼吸、循环)。 气道:保证气道不被舌头或异物阻塞。 呼吸:检查病人是否呼吸,如无呼吸可用袖珍面罩等提供通气。 循环:检查脉搏,如没有脉搏应施行心肺复苏。 (3)初步治疗。 氨中毒无特效解毒药,应采用支持治疗。 如果接触浓度500ppm,并出现眼刺激、肺水肿的症状,则推荐采取以下措拖:先喷5次地塞米松(用定量吸入器),然后每5分钟喷两次,直至到达医院急症室为止。 如果接触浓度1500ppm,应建立静脉通路,并静脉注射10g甲基泼尼松龙(methylprednisolone)或等量类固醇。(注意:在临床对照研究中,皮质类固醇的作用尚未证实。) 对氨吸入者,应给湿化空气或氧气。如有缺氧症状,应给湿化氧气。 如果呼吸窘迫,应考虑进行气管插管。当病人的情况不能进行气管插管时,如条件许可,应施行环甲状软骨切开术。对有支气管痉挛的病人,可给支气管扩张剂喷雾。 如皮肤接触氨,会引起化学烧伤,可按热烧伤处理:适当补液,给止痛剂,维持体温,用消毒垫或清洁床单覆盖伤面。如果皮肤接触高压液氨,要注意冻伤。误服者给饮牛奶,有腐蚀症状时忌洗胃。 3 泄漏应急处置措施 (1)少量泄漏。 撤退区域内所有人员。防止吸入蒸气,防止接触液体或气体。处置人员应使用呼吸器。禁止进入氨气可能汇集的局限空间,并加强通风。只能在保证安全的情况下堵漏。泄漏的容器应转移到安全地带,并且仅在确保安全的情况下才能打开阀门泄压。可用砂土、蛭石等惰性吸收材料收集和吸附泄漏物。收集的泄漏物应放在贴有相应标签的密闭容器中,以便废弃处理。 (2)大量泄漏。 疏散场所内所有未防护人员,并向上风向转移。泄漏处置人员应穿上全封闭重型防化服,佩戴好空气呼吸器,在做好个人防护措施后,用喷雾水流对泄漏区域进行稀释。通过水枪的稀释,使现场的氨气渐渐散去,利用无火花工具对泄漏点进行封堵。 向当地政府和“119”及当地环保部门、公安交警部门报警,报警内容应包括事故单位;事故发生的时间、地点、化学品名称和泄漏量、危险程度;有无人员伤亡以及报警人姓名、电话。 禁止接触或跨越泄漏的液氨,防止泄漏物进入阴沟和排水道,增强通风。场所内禁止吸烟和明火。在保证安全的情况下,要堵漏或翻转泄漏的容器以避免液氨漏出。要喷雾状水,以抑制蒸气或改变蒸气云的流向,但禁止用水直接冲击泄漏的液氨或泄漏源。防止泄漏物进入水体、下水道、地下室或密闭性空间。禁止进入氨气可能汇集的受限空间。清洗以后,在储存和再使用前要将所有的保护性服装和设备洗消。 4 火灾应急处置措施 在贮存及运输使用过程中,如发生火灾应采取以下措施: (1)报警:迅速向当地119消防、政府报警。报警内容应包括:事故单位;事故发生的时间、地点、化学品名称、危险程度;有无人员伤亡以及报警人姓名、电话。 (2)隔离、疏散、转移遇险人员到安全区域,建立500m左右警戒区,并在通往事故现场的主要干道上实行交通管制,除消防及应急处理人员外,其他人员禁止进入警戒区,并迅速撤离无关人员。 (3)消防人员进入火场前,应穿着防化服,佩戴正压式呼吸器。氨气易穿透衣物,且易溶于水,消防人员要注意对人体排汗量大的部位,如生殖器官、腋下、肛门等部位的防护。 (4)小火灾时用干粉或CO2灭火器,大火灾时用水幕、雾状水或常规泡沫。 (5)储罐水灾时,尽可能远距离灭火或使用遥控水枪或水炮扑救。 (6)切勿直接对泄漏口或安全阀门喷水,防止产生冻结。 (7)安全阀发出声响或变色时应尽快撤离,切勿在储罐两端停留。 5 氨的职业危害预防措施 (1)氨作业工人应进行作业前体检,患有严重慢性支气管炎、支气管扩张、哮喘以及冠心病者不宜从事氨作业。 (2)工作时应选用耐腐蚀的工作服、防碱手套、眼镜、胶鞋、用硫酸铜或硫酸锌防毒口罩,防毒口罩应定期检查,以防失效。 (3)在使用氨水作业时,应在作业者身旁放一盆清水,以防万一;在氨水运输过程中,应随身携带23只盛满3%硼酸液的水壶,以备急救冲洗;配制一定浓度氨水时,应戴上风镜;使用氨水时,作业者应在上风处,防止氨气刺激面部;操作时要严禁用手揉擦眼睛,操作后洗净双手。 (4)预防皮肤被污染,可选用5%硼酸油膏。 (5)配备良好的通风排气设施、合适的防爆、灭火装置。 (6)工作场所禁止饮食、吸烟、禁止明火、火花。 (7)应急救援时,必须佩带空气呼吸器。 (8)发生泄漏时,将泄漏钢瓶的渗口朝上,防止液态氨溢出。 (9)加强生产过程的密闭化和自动化,防止跑、冒、滴、漏。 (10)使用、运输和贮存时应注意安全,防止容器破裂和冒气。 (11)现场安装氨气监测仪及时报警发现。一氧化碳工艺安全信息内容一氧化碳 (carbon monoxide, CO)纯品为无色、无臭、无刺激性的气体。 分子量28.01,密度0.967g/L, 冰点为-207,沸点-190。在水中的溶解度甚低,但易溶于氨水。空气混合爆炸极限为12.5%74%。一氧化碳进入人体之后会和血液中的血红蛋白结合,进而使血红蛋白不能与氧气结合,从而引起机体组织出现缺氧,导致人体窒息死亡。因此一氧化碳具有毒性。一氧化碳是无色、无臭、无味的气体,故易于忽略而致中毒。常见于家庭居室通风差的情况下,煤炉产生的煤气或液化气管道漏气或工业生产煤气以及矿井中的一氧化碳吸入而致中毒。物理性质在通常状况下,一氧化碳是无色、无臭、无味、难溶于水的气体,熔点-199,沸点-191.5。标准状况下气体密度为l.25g/L,和空气密度(标准状况下1.293g/L)相差很小,这也是容易发生煤气中毒的因素之一。它为中性气体。 分子结构:一氧化碳分子为极性分子,但由于存在反馈电子,分子的极性很弱。分子形状为直线形。主要成分:纯品。 外观与性状:无色、无嗅、无味的气体。 熔点():-199.1 沸点():-191.4 相对密度(水=1):0.793(液体)。 相对蒸气密度(空气=1):0.967 蒸气压(kPa):309kPa/-180 燃烧热(kJ/mol): 溶解性:在水中的溶解度低,但易被氨水吸收。 稳定性:稳定。 禁配物:强氧化剂、碱类。 分解产物:400700间分解为碳和二氧化碳。 危险特性:是一种易燃易爆气体。与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸;与空气混物爆炸限1275。 其他物理特性:自燃点608.89。化学性质 碳的最外层有四个电子 氧的最外层有6个电子,这样碳的两个单电子进入到氧的p轨道和氧的两个单电子配对成键,这样就形成两个键,然后氧的孤电子对进入到碳的空的P轨道中形成一个配键,这样氧和碳之间就形成了三个键。其电子式为:C:O : 一氧化碳分子中碳元素的化合价是+2,能进一步被氧化成4价,从而使一氧化碳具有可燃性和还原性,一氧化碳能够在空气中或氧气中燃烧,生成二氧化碳: 2CO+O2=点燃=2CO2 燃烧时发出蓝色的火焰,放出大量的热。因此一氧化碳可以作为气体燃料。 实验室一般使用浓硫酸或加热条件下催化草酸分解并用氢氧化钠除掉二氧化碳制得一氧化碳,具体反应如下: 1.C2H2O4CO2+CO+H2O C2H2O4浓H2SO4CO2+CO+H2O2.2NaOH+CO2=Na2CO3+H2O 一氧化碳作为还原剂,高温时能将许多金属氧化物还原成金属单质,因此常用于金属的冶炼。如:将黑色的氧化铜还原成红色的金属铜,将氧化锌还原成金属锌: CO+CuO=Cu+CO2 CO+ZnO=Zn+CO2 在炼铁炉中可发生多步还原反应: CO+3Fe2O3=高温= 2 Fe3O4+CO2 Fe3O4+CO=高温=3FeO+CO2 FeO+CO=高温=Fe+CO2 一氧化碳还原氧化铁 Fe2O3+3CO=高温=2Fe+3CO2 注意:一氧化碳常温下化学性质稳定 一氧化碳还有一个重要性质: 在加热和加压的条件下,它能和一些金属单质发生反应,组成分子化合物。如Ni(CO)4(四羰基镍)、Fe(CO)5(五羰基铁)等,这些物质都不稳定,加热时立即分解成相应的金属和一氧化碳,这是提纯金属和制得纯一氧化碳的方法之一。但这些物质都有剧毒,且极难治疗! 职业接触凡含碳的物质燃烧不完全时,都可产生CO气体。在工业生产中接触CO的作业不下70余种,如冶金工业中炼焦、炼铁、锻冶、铸造和热处理的生产;化学工业中合成氨、丙酮、光气、甲醇的生产;矿井放炮、煤矿瓦斯爆炸事故;碳素石墨电极制造;内燃机试车;以及生产金属羰化物如羰基镍Ni(CO)4、羰基铁Fe(CO)5等过程,或生产使用含CO的可燃气体(如水煤气含CO达40%,高炉与发生炉煤气中含30%,煤气含5%15%),都可能接触CO。炸药或火药爆炸后的气体含CO约30%60%。使用柴油、汽油的内燃机废气中也含CO约1%8%。 一氧化碳中毒(亦称煤气中毒) 一氧化碳进入人体之后会和血液中的血红蛋白结合,由于CO与血红蛋白结合能力远强于氧气与血红蛋白的结合能力,进而使能与氧气结合的血红蛋白数量急剧减少,从而引起机体组织出现缺氧,导致人体窒息死亡。因此一氧化碳具有毒性。一氧化碳是无色、无臭、无味的气体,故易于忽略而致中毒。常见于家庭居室通风差的情况下,煤炉产生的煤气或液化气管道漏气或工业生产煤气以及矿井中的一氧化碳吸入而致中毒。 中毒症状一氧化碳中毒症状表现在以下几个方面: 一是轻度中毒 。 患者可出现头痛、头晕、失眠、视物模糊、耳鸣、恶心、呕吐、全身乏力、心动过速、短暂昏厥。血中碳氧血红蛋白含量达10%-20%。 二是中度中毒。除上述症状加重外,口唇、指甲、皮肤粘膜出现樱桃红色,多汗,血压先升高后降低,心率加速,心律失常,烦躁,一时性感觉和运动分离(即尚有思维,但不能行动)。症状继续加重,可出现嗜睡、昏迷。血中碳氧血红蛋白约在30%-40%。经及时抢救,可较快清醒,一般无并发症和后遗症。 三是重度中毒。患者迅速进入昏迷状态。初期四肢肌张力增加,或有阵发性强直性痉挛;晚期肌张力显著降低,患者面色苍白或青紫,血压下降,瞳孔散大,最后因呼吸麻痹而死亡。经抢救存活者可有严重合并症及后遗症。 一氧化碳的后遗症。 中、重度中毒病人有神经衰弱、震颤麻痹、偏瘫、偏盲、失语、吞咽困难、智力障碍、中毒性精神病或去大脑强直。部分患者可发生继发性脑病。 临床表现急性中毒急性一氧化碳中毒是我国发病和死亡人数最多的急性职业中毒。CO也是许多国家引起意外生活性中毒中致死人数最多的毒物。急性CO中毒的发生与接触CO的浓度及时间有关。我国车间空气中CO的最高容许浓度为30mg/m3。有资料证明,吸入空气中CO浓度为240mg/m3共3h,Hb中COHb可超过10%;CO浓度达292.5mg/m时,可使人产生严重的头痛、眩晕等症状,COHb可增高至25%;CO浓度达到 117Omg/m3时,吸入超过6Omin可使人发生昏迷,COHb约高至60%。CO浓度达到11700mg/m3时,数分钟内可使人致死,COHb可增高至90%。 临床上以急性脑缺氧的症状与体征为主要表现。接触CO后如出现头痛、头昏、心悸、恶心等症状,于吸入新鲜空气后症状即可迅速消失者,属一般接触反应。 轻度中毒者出现剧烈的头痛、头昏、心跳、眼花、四肢无力、恶心、呕吐、烦躁、步态不稳、轻度至中度意识障碍 (如意识模糊、朦胧状态),但无昏迷。于离开中毒场所吸入新鲜空气或氧气数小时后,症状逐渐完全恢复。中度中毒者除上述症状外,面色潮红,多汗、脉快、意识障碍表现为浅至中度昏迷。及时移离中毒场所并经抢救后可渐恢复,一般无明显并发症或后遗症。 重度中毒时,意识障碍严重,呈深度昏迷或植物状态。常见瞳孔缩小,对光反射正常或迟钝,四肢肌张力增高,牙关紧闭,或有阵发性去大脑强直,腱壁反射及提睾反射一般消失,腱反射存在或迟钝,并可出现大小便失禁。脑水肿继续加重时,表现持续深度昏迷,连续去脑强直发作,瞳孔对光反应及角膜反射迟钝,体温升高达3940,脉快而弱,血压下降,面色苍白或发绀,四肢发凉,出现潮式呼吸。有的患者眼底检查见视网膜动脉不规则痉挛,静脉充盈,或见乳头水肿,提示颅内压增高并有脑疝形成的可能。但不少患者眼底检查阴性,甚至脑脊液检查压力正常,而病理解剖最后仍证实有严重的脑水肿。 重度中毒患者经过救治从昏迷中苏醒的过程中,常出现躁动、意识混浊、定向力丧失,或失去远、近记忆力。部分患者神志恢复后,可发现皮层功能障碍如失用(apraxia)、失认 (agnosia)、失写 (agraphia)、失语 (aphasia)、皮层性失明或一过性失聪等异常;还可出现以智能障碍为主的精神症状。此外,短暂的轻度偏瘫、帕金森综合征、舞蹈症、手足徐动症或癫痫大发作等均有人报道。经过积极抢救治疗,多数重度中毒患者仍可完全恢复。少数出现植物状态的患者,表现为意识丧失、睁眼不语、去脑强直,预后不良。 除上述脑缺氧的表现外,重度中毒者中还可出现其他脏器的缺氧性改变或并发。部分患者心律不齐,出现严重的心肌损害或休克;并发肺水肿者肺中出现湿啰音,呼吸困难。约1/5的患者发现肝大,2周后常可缩小。因应激性胃溃疡可出现上消化道出血。偶有并发横纹肌溶解 (rhabdomyolysis)及筋膜间隙综合征 (compartment syndrome)者,因出现肌红蛋白尿可继发急性肾功衰竭。有的患者出现皮肤自主神经营养障碍,表现为四肢或躯干部皮肤出现大、小水疱或类似烫伤的皮肤病变,或皮肤成片红肿类似丹毒样改变,经对症处理不难痊愈。听觉前庭损害可表现为耳聋、耳鸣和眼球震荡;尚有2%3%的患者出现神经损害,最常受累的是股外侧皮神经、尺神经、正中神经、胫神经、腓神经等,可能与昏迷后局部受压有关。 迟发脑病 (delayed encephalopathy)部分急性CO中毒患者于昏迷苏醒后,意识恢复正常,但经230天的假愈期后,又出现脑病的神经精神症状,称为急性CO中毒迟发脑病。因表现出双相的临床过程,亦有人称之为急性CO中毒神经系统后发症。常见的临床表现有以下几种: (1)精神症状:突然发生定向力丧失、表情淡漠、反应迟钝、记忆障碍、大小便失禁、生活不能自理;或出现幻视、错觉、语无伦次、行为失常,表现如急性痴呆木僵型精神病。 (2)脑局灶损害 1)锥体外系神经损害:以帕金森综合征多见,患者四肢呈铅管状或齿轮样肌张力增高、动作缓慢、步行时双上肢失去随伴运动或出现书写过小症与静止性震颤。少数患者可出现舞蹈症。 2)锥体系神经损害:表现为一侧或两侧的轻度偏瘫,上肢屈曲强直,腱反射亢进,踝阵挛阳性,引出一侧或两侧病理反射,也可能出现运动性失语或假性球麻痹。 3)其他:皮层性失明、癫痫发作、顶叶综合征 (失认、失用、失写或失算)亦曾有报道。 3.低浓度CO对人体的影响 长期接触低浓度CO是否可以造成慢性中毒,至今尚有争论。近年来的资料认为,长期接触低浓度CO可能对人体健康造成两方面的影响: (1)神经系统:头晕、头痛、耳鸣、乏力、睡眠障碍、记忆力减退等脑衰弱综合征的症状比较多见,神经行为学测试可发现异常,多于脱离CO接触后即可恢复。上述症状顽固者,往往有多次轻度急性CO中毒的历史。 (2)心血管系统:心电图可出现心律失常、ST段下降、QT间期延长,或右束支传导阻滞等异常。在职业接触者COHb饱和度达到5%以上时,可以见到血清乳酸脱氢酶 (LDH)、羟丁酸脱氢酶 (HBD)、肌酸磷酸激酶 (CPK)增高,这些酶活性的增高可能与心肌损害有关。此外,通过人群调查,发现约20%25%的吸烟者血中COHb高于8%10%,这些人心肌梗死的猝死率比不吸烟者为高。近年对63名冠状动脉硬化患者研究发现,在接触CO使COHb水平由0.6%升高至2%及3.9%后,其出现心肌梗死和心绞痛的时间提前,对运动的耐受力明显减低。这些调查资料,结合动物实验研究,提示在低浓度CO的长期作用下,心血管系统有可能受到不利影响。其与血红蛋白结合能力为氧气的二百倍。 【预防】 在生产场所中,应加强自然通风,防止输送管道和阀门漏气。有条件时,可用CO自动报警器。矿井放炮后,应严格遵守操作规程,必须通风2Omin后方可进入工作。进入CO浓度较高的环境内,须戴供氧式防毒面具进行操作。冬季取暖季节,应宣传普及预防知识,防止生活性CO中毒事故的发生。对急性CO中毒治愈的患者,出院时应提醒家属继续注意观察患者2个月,如出现迟发脑病有关症状,应及时复查和处理。 【解毒】 如果吸入少量的CO造成中毒,应该吸入大量新鲜空气或者进行人工呼吸。医疗上可以通过向血液里注射亚甲基蓝进行解毒,因为CO与亚甲基蓝的结合比碳氧血红蛋白更牢固,从而有利于CO转向亚甲基蓝而释放出血红蛋白,恢复正常呼吸作用。 可以救命的一氧化碳上世纪60年代,人们就知道身体组织受毒素,紫外线辐射,激素和药物等侵害时,血红素加氧酶-1(简称HO-1)会及时对抗相应的受伤和感染,此时体内会自然地产生少量的一氧化碳.不过,当时人们都认为一氧化碳是组织代谢的副产品. 然而,美国科学家所罗门辛德在1993年提出,一氧化碳在人体中扮演了一个有意义的角色.它有协助一氧化氮管理人体内部器官的功能,例如大肠的收缩,胃的排空等.但是,研究人员作了很多的努力之后,还是没有检查出一氧化碳在人体中的准确作用. 由于一氧化碳对人体有益,一些科学家想把它用于临床治疗.然而,一氧化碳是有毒气体,使用稍有不当,就会对人类造成危害.一氧化碳能紧紧结合红细胞中的血红蛋白,形成羧化血红蛋白,使氧气无法载运到全身.当人体内20%左右的血红蛋白转变成羧化血红蛋白时,就会出现恶心,呕吐和晕倒的情况;当人体内40%左右的血红蛋白转变成羧化血红蛋白时,就会夺人性命.因此,有科学家反对把一氧化碳引入对人类的临床治疗.但美国的奥古斯丁乔和弗里茨贝奇称,医药界不该这么快拒绝一氧化碳的治疗潜力,一氧化碳疗法是紧急情况下最好的方法. 2001年上半年,乔和贝奇领导的研究小组指出,患者吸入微量一氧化碳有助于防止器官的排斥反应.他们在进行老鼠心脏移植时,用一种叫卟啉的化学药品将HO-1封闭,一星期内老鼠有排斥移植的反应产生.但如果将老鼠置于含微量一氧化碳的空气中,则可以幸存.也就是说,吸入动物体内的微量一氧化碳可以完成H0-1所能完成的任务.这个实验也说明,20世纪60年代人们在研究HO-1时发现的一氧化碳不是代谢废物,而是在HO-1的作用下,人体为生理防御反应所产生的气体. 2001年年底,美国的大卫平斯基的实验表明,一氧化碳对肺移植手术也大有帮助.平斯基改变了一些老鼠的遗传特性,使它们缺少制造HO-1的基因,然后让它们和正常的老鼠一起进行模拟的肺移植手术.平斯基用夹子截断供应到老鼠左肺的血流,一小时后让它们重新恢复流动.结果正常老鼠的生存率为90%,而所有改变过基因的老鼠皆死于产生在肺中的血块.在进一步的实验中,当平斯基给改变过基因的老鼠呼吸微量的一氧化碳后,只有一半老鼠死于非命.目前,每年有数千人进行肺移植手术,失败率为30%,比其他器官移植的失败率要高,比如,肾移植的失败率只有10%.因此,医药学家希望把一氧化碳的治疗作用引入到肺移植手术中.目前也有一些医生把一氧化碳用于临床手术中,取得了一定效果. 危害一氧化碳(co)是 一种对血液,与神经系统毒性很强的污染物.,空气中的一氧化碳(co),通过呼吸系统,进入人体血液内,与血液中的血红蛋白(hemoglobin,hb)。肌肉中的肌红蛋白。含二价铁的呼吸酶结合,形成可逆性的结合物。 一氧化碳与血红蛋白的结合,不仅降低血球携带氧的能力,而且还抑制,延缓氧血红蛋白(o2hb)的解析与释放,导致机体组织因缺氧而坏死,严重者则可能危及人的生命。 正常情况下,经过呼吸系统进入血液的氧,将与血红蛋白(hb)结合,形成氧血红蛋白(o2hb)被输送到机体的各个器官与组织,参与正常的新陈代谢活动。比如果空气中的一氧化碳浓度过高,很多的一氧化碳将进入机体血液。 进入血液的一氧化碳,优先与血红蛋白(hb)结合,形成碳氧血红蛋白(cohb),一氧化碳与血红蛋白的结合力比氧与血红蛋白的结合力大2百3百倍。 碳氧血红蛋白(cohb)的解离速度,只是氧血红蛋白(o2hb的1/36百。 一氧化碳对机体的危害程度,主要取决于空气中的一氧化碳 的浓度与机体吸收高浓度一氧化碳空气的时间长短。一氧化碳中毒者血液中的碳氧血红蛋白(cohb)的含量与空气中 的 一氧化碳的浓度成正比关系,中毒的严重程度则与血液中 的碳氧血红蛋白(cohb)含量有直接关系. 此外,机体内 的血红蛋白(hb)的代谢过程,也能产生 一氧化碳,形成内源性的碳氧血红蛋白(cohb). 正常机体内, 一般碳氧血红蛋白(cohb)只占0.41.0%,贫血患者则会更高 一些. 心脏与大脑是与人的生命最密切 的组织与器官,心脏与大脑对机体供氧不足 的反应特别敏感. 因此, 一氧化碳中毒导致 的机体组织缺氧,对心脏与大脑的影响最为显著后,人体血液内的碳氧血红蛋白(cohb)可达到2%以上,从而引起神经系统反应,例比如,行动迟缓,意识不清. 比如果 一氧化碳浓度达到30ppm,人体血液内 的碳氧血红蛋白(cohb)可达到5%左右,可导致视觉与听力障碍;当血液内 的碳氧血红蛋白(cohb)达到10%以上时,机体将出现严重 的中毒症状,例比如,头痛.眩晕.恶心.胸闷.乏力.意识模糊等. 一氧化碳中毒对心脏也能造成严重 的伤害. 当碳氧血红蛋白(cohb)达到5%以上时,冠状动脉血流量显著增加;cohb达到10%时,冠状动脉血流量增加25%,心肌摄取氧 的数量减少,导致某些组织细胞内 的氧化酶系统活动停止. 一氧化碳中毒还会引起血管内 的脂类物质累积量增加,导致动脉硬化症. 动脉硬化症患者,更容易出现 一氧化碳中毒. 2.5%,甚至1.7% 的碳氧血红蛋白(cohb),就可能使心绞痛患者 的发作时间大大缩短. 由于一氧化碳在肌肉中 的累积效应,即使在停止吸入高浓度 的 一氧化碳后,在数日之内,人体仍然会感觉到肌肉无力. 一氧化碳中毒对大脑皮层 的伤害最为严重,常常导致脑组织软化.坏死. 美国卫生部门把碳氧血红蛋白(cohb)不超过2%作为制定空气中 的 一氧化碳(co)限值标准 的依据. 考虑到老人.儿童与心血管疾病患者的安全,我国环境卫生部门规定:空气中的一氧化碳(co) 的日平均浓度不得超过1毫克/立方米(0.8ppm); 一次测定最高容许浓度为3毫克/立方米(2.4ppm). 人体内正常水平的cohb含量为0.5%左右,安全阈值约为10%. 当cohb含量达到25%30%时,显示中毒症状,几小时后陷入昏迷. 当cohb含量达到70%时,即刻死亡. 血液中 的cohb含量达到30%40%时,血液呈现樱红色,皮肤.指甲.粘膜及口唇部均有显示. 同时,还出现头痛.恶心.呕吐.心悸等症状,甚至突然昏倒. 深度中毒者出现惊厥,脑与肺部出现水肿,心肌受到损害等症状,比如不及时抢救,极易导致死亡。 一氧化碳污染对健康的影响一氧化碳(CO)是煤、石油等含碳物质不完全燃烧的产物,是一种无色、无臭、无刺激性的有毒气体,几乎不溶于水,在空气中不易与其他物质产生化学反应,故可在大气中停留23年之久。如局部污染严重,对人群健康有一定危害。 污染来源 大气对流层中的一氧化碳本底浓度约为0.12ppm,这种含量对人体无害。由于世界各国交通运输事业、工矿企业不断发展,煤和石油等燃料的消耗量持续增长,一氧化碳的排放量也随之增多。据1970年不完全统计,全世界一氧化碳总排放量达3.71亿吨。其中汽车废气的排出量占2.37亿吨,约占64,成为城市大气日益严重的污染来源。采暖和茶炊炉灶的使用,不仅污染室内空气,也加重了城市的大气污染。一些自然灾害,如火山爆发、森林火灾、矿坑爆炸和地震等灾害事件,也会造成局部地区一氧化碳浓度的增高。吸烟也会造成一氧化碳污染危害。 危害和机理 随空气进入人体的一氧化碳,经肺泡进入血循环后,能与血液中的血红蛋白(Hb)、肌肉中的肌红蛋白和含二价铁的细胞呼吸酶等形成可逆性结合。一氧化碳与血红蛋白的亲和力比氧与血红蛋白的亲和力大200300倍,因此,一氧化碳侵入机体,便会很快与血红蛋白结合成碳氧血红蛋白(COHb),从而阻碍氧与血红蛋白结合成氧合血红蛋白(HbO2)。但碳氧血红蛋白的解离速度只是氧合血红蛋白的1/3600,因而延长了碳氧血红蛋白的解离时间和加剧了一氧化碳的毒作用。一氧化碳中毒的轻重,呈现出明显的剂量反应关系。吸入的一氧化碳浓度越高,碳氧血红蛋白的饱和度(碳氧血红蛋白占总血红蛋白的百分比)也越高,达到饱和时间就越短。从图可以看出,吸入浓度为0.01的一氧化碳,过8小时后,碳氧血红蛋白的饱和度约为10,无明显中毒症状;但当吸入浓度为0.5的一氧化碳,只要2030分钟,碳氧血红蛋白饱和度就可达到70左右。中毒者就会出现脉弱,呼吸变慢,最后衰竭致死。这种急性的一氧化碳中毒,常发生在车间事故和冬季家庭取暖不慎时。 长时间接触低浓度的一氧化碳是否会造成慢性中毒,目前有两种看法:一种认为在血液中形成的碳氧血红蛋白可以逐渐解离,只要脱离接触,一氧化碳的毒作用即可逐渐消除,因而不存在一氧化碳的慢性中毒;另一种认为接触低浓度的一氧化碳能引起慢性中毒。近年来,许多动物实验和流行病学调查都证明,长期接触低浓度一氧化碳对健康是有影响的,主要表现在:对心血管系统的影响。S.M.艾尔斯等人发现,当血液中碳氧血红蛋白的饱和度为8时,静脉血氧张力降低,从而引起心肌摄取氧量减少和促使某些细胞内氧化酶系统停止活动。P.阿斯特鲁普等还证明,一氧化碳能促使大血管中类脂质沉积量增加。当血中碳氧血红蛋白达15时,能促使大血管内膜对胆固醇的摄入量增加并促进胆固醇沉积,使原有的动脉硬化症加重,从而影响心肌,使心电图出现异常。对神经系统的影响。脑是人体内耗氧最多的器官,也是对缺氧最敏感的器官。动物实验表明,脑组织对一氧化碳的吸收能力明显高于心、肺、肝、肾等。一氧化碳进入人体后,大脑皮层和苍白球受害最为严重。缺氧还会引起细胞呼吸内窒息,发生软化和坏死,出现视野缩小,听力丧失等;轻者也会出现头痛、头晕、记忆力降低等神经衰弱症候群,并兼有心前区紧迫感和针刺样疼痛。造成低氧血症。出现红细胞、血红蛋白等代偿性增加,其症状与缺氧引起的病理变化相似。对后代的影响。通过对吸烟和非吸烟孕妇的观察,吸烟孕妇的胎儿,有出生时体重小和智力发育迟缓的趋向。 防治措施 制定和执行一氧化碳的卫生标准。美国在考虑到劳动强度的情况下,规定接触8小时的一氧化碳标准为9ppm,接触1小时为35ppm。中国工业企业设计卫生标准规定:居住区大气中最高一次容许浓度为3毫克米3,日平均最高容许浓度为1毫克米3,车间连续接触8小时的最高容许浓度为30毫克米3。此外,改进汽车燃料和改革工业生产工艺,使燃料能完全燃烧;加强冬季采暖管理,使居室通风,在取暖炉灶上安装通风排烟设备等,均可在一定程度上防止一氧化碳中毒。 毒理学资料急性毒性:LC50:小鼠23005700mg/m3,豚鼠10003300mg/m3,兔460017200mg/m3,猫460045800mg/m3,狗3440045800mg/m3。 亚急性和慢性毒性:大鼠吸入0.0470.053mg/L,48h/d,30d,出现生长缓慢,血红蛋白及红细胞数增高,肝脏的琥珀酸脱氢酶及细胞色素氧化酶的活性受到破坏。猴吸入0.11mg/L,经36个月引起心肌损伤。 代谢:一氧化碳随空气吸入后,通过肺泡进入血液循环,与血液中的血红蛋白(Hb)和血液外的其他某些含铁蛋白质(如肌红蛋白、二价铁的细胞色素等)形成可逆性的结合。其中90以上一氧化碳与Hb结合成碳氧血红蛋白(HbCO),约7的一氧化碳与肌红蛋白结合成碳氧肌红蛋白,仅少量与细胞色素结合。实验表明一氧化碳在体内不蓄积,动物吸入200ppm一氧化碳持续1个月,停毒后24h一氧化碳已完全排出,其中98.5是以原形经肺排出,仅l在体内氧化成二氧化碳。一氧化碳吸收与排出,取决于空气中一氧化碳的分压和血液中HbCO的饱和度(即Hb总量中被一氧化碳结合的百分比)。次要的因素为接触时间和肺通气量;后者与劳动强度直接有关。 中毒机理:是一氧化碳与血红蛋白(Hb)可逆性结合引起缺氧所致,一般认为一氧化碳与Hb的亲和力比氧与Hb的亲和力大230270倍,故把血液内氧合血红蛋白(HbO2)中的氧排挤出来,形成HbCO,又由于HbCO的离解比HbO2慢3600倍,故HbCO较之HbO2更为稳定。HbCO不仅本身无携带氧的功能,它的存在还影响HbO2的离解,于是组织受到双重

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论