




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线的 两点式方程 y=kx+b y- y0 =k(x- x0 ) k为斜率, P0(x0 ,y0)为直线上的一定点 k为斜率,b为截距 1). 直线的点斜式方程: 2). 直线的斜截式方程: 解:设直线方程为:y=kx+b 例1.已知直线经过P1(1,3)和P2(2,4)两点,求直 线的方程 一般做法: 由已知得: 解方程组得: 所以:直线方程为: y=x+2 方程思想 还有其他做法吗? 为什么可以这样做,这样做的 根据是什么? 即: 得: y=x+2 设P(x,y)为直线上不同于P1 , P2的动点, 与P1(1,3)P2(2,4)在同一直线上,根据斜率相 等可得: 二、直线的 两点式方程 已知两点P1 ( x1 , y1 ),P2(x2 , y2),求通过这 两点的直线方程 解:设点P(x,y)是直线上不同于P1 , P2的点 可得直线的两点式方程: kPP1= kP1P2 记忆特点: 1.左边全为y,右边全为x 2.两边的分母全为常数 3.分子,分母中的减数相同 推广 不是! 是不是已知任一直线中的两点就能用两 点式 写出直线方程呢? 两点式不能表示平行于坐标轴或与坐 标轴重合的直线 注意: 当x1 x2或y1= y2时,直线P1 P2没有两点式程.(因 为x1 x2或y1= y2时,两点式的分母为零,没有意义) 那么两点式不能用来表示哪些直线的方程呢 ? 若点P1 (x1 , y1 ),P2( x2 , y2)中有x1 x2,或 y1= y2,此时过这两点的直线方程是什么? 当x1 x2 时方程为: x x 当 y1= y2时方程为: y = y 例2:已知直线 l 与x轴的交点为A(a,0),与y轴的 交点为B(0,b),其中a0,b0,求直线l 的方程 解:将两点A(a,0), B(0,b)的坐标代入两点式, 得: 即 所以直线l 的方程为: 四、直线的截距式 方程 截距可是正数,负数和零 注意: 不能表示过原点或与坐标轴平行或重合的直线 直线与 x 轴的交点(a, o)的横坐标 a 叫做 直线在 x 轴上的截距 是不是任意一条直线都有其截距式方程呢? 截距式直线方程: 直线与 y 轴的交点(0, b)的纵坐标 b 叫做 直线在 y 轴上的截距 过(1,2)并且在两个坐标轴上的截距 相等的直线有几条? 解: 两条 例 3: 那还有一条呢?y=2x (与x轴和y轴的截距都为0) 所以直线方程为:x+y-3=0 a=3 把(1,2)代入得: 设:直线的方程为: 举例 解:三条 (2) 过(1,2)并且在两个坐标轴上的截距的绝 对值相等的直线有几条? 解得:a=b=3或a=-b=-1 直线方程为:y+x-3=0、y-x-1=0或y=2x 设 截距可是正数,负数和零 例4:已知角形的三个顶点是A(5,0), B(3,3),C(0,2),求BC边所在的直线 方程,以及该边上中线的直线方程. 解:过B(3,-3),C(0,2)两点式方程为: 整理得:5x+3y-6=0 这就是BC边所在直线的方程. 举例 BC边上的中线是顶点A与BC边中点M所连 线段,由中点坐标公式可得点M的坐标为: 即 整理得:x+13y+5=0 这就是BC边上中线所在的直线的方程. 过A(-5,0),M 的直线方程 M 中点坐标公式: 则 若P1 ,P2坐标分别为( x1 ,y1 ), (x2 ,y2) 且中点M的坐标为(x, y). B(3,-3),C(0,2) M 即 M 已知直线l :2x+y+3=0,求关于点A(1,2)对 称的直线l 1的方程. 解:当x=0时,y=3.点(0,-3)在直线l上,关于 (1,2)的对称点为(2,7). 当x=-2时,y=1. 点(-2,1)在直线l上,关于 (1,2)的对称点为(4,3). 那么,点 (2,7) ,(4,3)在l 1上. 因此,直线l 1的方程为: 化简得: 2x + y -11=0 思考题 还有其它的方法吗? l l 1,所以l 与l 1的斜率相同 kl1=-2 经计算,l 1过点(4,3) 所以直线的点斜式方程为:y-3=-2(x-4) 化简得: 2x + y -11=0 名 称 几 何 条 件 方程 局限性 归纳 直线方程的四种具体形式 (1) 平面直角坐标系中的每一条直线 都可以用一个关于x , y的二元一次 方程表示吗? (2) 每一个关于x , y的二元一次方程 都表示直线吗? 思考 分析:直线方程 二元一次方程 (2) 当斜率不存在时L可表示为 x - x0=0,亦可 看作y的系数为0的二元一次方程. (x-x0+0y=0) 结论1:平面上任意一条直线都可以用一个关 于 x , y 的二元一次方程表示. (1) 当斜率存在时L可表示为 y=kx+b 或 y - y0 = k ( x - x0 ) 显然为二元一次方程. 即:对于任意一个二元一次方程 Ax+By+C=0 (A.B不同时为0),判断它是否表示一条直线? (1)当B 0时,方程可变形为 它表示过点 ,斜率为 的直线. (2)当B=0时,因为A,B不同时为零,所以A一定不 为零,于是方程可化为 ,它表示一条与 y 轴平 行或重合的直线. 结论2: 关于 x , y 的二元一次方程,它都表示 一条直线. 直线方程 二元一次方程 由1,2可知: 直线方程 二元一次方程 定义:我们把关于 x , y 的二元一次方程 Ax+By+C=0(其中A,B不同时为 0) 叫做直线的一般式方程,简称一般式. 定义 在方程Ax+By+C=0中,A,B,C为何值 时,方程表示的直线 (1)平行于x轴:(2)平行于y轴: (3)与x轴重合:(4)与y轴重合: 分析: (1)直线平行于x轴时,直线的斜率不存在, 在x轴上的截距不为0即 A=0 , B 0,C 0. (2) B=0 , A 0 , C 0. (3) A=0 , C=0 , B 0. (4) B=0 , C=0 , A 0. 探究 例 1 已知直线过点A(6,4),斜率为 ,求直线的点斜式和一般式方程. 解:代入点斜式方程有 y+4= (x-6). 化成一般式,得 4x+3y-12=0. 举例 例2 把直线L的一般式方程 x-2y+6=0 化成斜 截式,求出L的斜率以及它在x轴与y轴上的截距, 并画出图形. 解:化成斜截式方程 y= x+3 因此,斜率为k= ,它在y轴上的截距是3. 令y=0 得x=6.即L在x轴上的截距是6. 由以上可知L与x 轴,y轴的交点 分别为A(-6,0)B(0,3),过 A,B做直线,为L的图形. 举例 m , n 为何值时,直线mx+8y+n=0和2x+my-1=0垂直? 解:(1)若两条直线的斜率都存在,则m不等于0, 且两条直线的斜率分别为 但由于 所以两条直线不垂直. (2)若m=0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学编制笔试题目及答案
- 知道智慧树青春健康懂营养课后章节测试满分答案满分测试答案
- 知道智慧树汽车理论(山东科技大学)满分测试答案
- 2025年小学常规考试试题及答案
- 化妆专业知识培训
- 2025初中语文考试题及答案
- 丙烯酰胺生产线项目人力资源管理方案
- 2025年小学口语交际试题及答案
- 抽水蓄能电站后期跟踪评估方案
- 2025十八项核心制度考试题库及答案
- 信息平台造价管理办法
- DG-TJ08-2202-2024 建筑信息模型技术应用标准(城市轨道交通)
- 2025年福建省中考历史试题含答案
- 2025年度学校国际交流合作计划
- 2025安全生产法考试题及答案
- 老旧城区改造项目建议书
- 2025年注册土木工程师专业基础考试题(附答案)
- 安全管理目标及责任书
- 阀门配送方案模板(3篇)
- 激光切割安全操作规程
- 肝癌介入术术后护理
评论
0/150
提交评论