《导数解答题》word版.doc_第1页
《导数解答题》word版.doc_第2页
《导数解答题》word版.doc_第3页
《导数解答题》word版.doc_第4页
《导数解答题》word版.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

导数解答题 1设f(x)=2x3+ax2+bx+1的导数为f(x),若函数y=f(x)的图象关于直线x=对称,且f(1)=0 ,()求实数a,b的值()求函数f(x)的极值2设(1)若f(x)在上存在单调递增区间,求a的取值范围(2)当0a2时,f(x)在1,4的最小值为,求f(x)在该区间上的最大值3已知函数f(x)=ax3+x2+bx(其中常数a,bR),g(x)=f(x)+f(x)是奇函数(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间1,2上的最大值和最小值4设函数f(x)=6x3+3(a+2)x2+2ax(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;(2)是否存在实数a,使得f(x)是(,+)上的单调函数?若存在,求出a的值;若不存在,说明理由5设定函数,且方程f(x)9x=0的两个根分别为1,4()当a=3且曲线y=f(x)过原点时,求f(x)的解析式;()若f(x)在(,+)无极值点,求a的取值范围1.解答:解:()因f(x)=2x3+ax2+bx+1,故f(x)=6x2+2ax+b从而f(x)=6y=f(x)关于直线x=对称,从而由条件可知=,解得a=3又由于f(x)=0,即6+2a+b=0,解得b=12()由()知f(x)=2x3+3x212x+1f(x)=6x2+6x12=6(x1)(x+2)令f(x)=0,得x=1或x=2当x(,2)时,f(x)0,f(x)在(,2)上是增函数;当x(2,1)时,f(x)0,f(x)在(2,1)上是减函数;当x(1,+)时,f(x)0,f(x)在(1,+)上是增函数从而f(x)在x=2处取到极大值f(2)=21,在x=1处取到极小值f(1)=62.解答:解:(1)f(x)=x2+x+2af(x)在存在单调递增区间f(x)0在有解f(x)=x2+x+2a对称轴为递减解得(2)当0a2时,0;f(x)=0得到两个根为;(舍)时,f(x)0;时,f(x)0当x=1时,f(1)=2a+;当x=4时,f(4)=8af(1)当x=4时最小=解得a=1所以当x=时最大为3.解答:解:(1)由题意得f(x)=3ax2+2x+b因此g(x)=f(x)+f(x)=ax3+(3a+1)x2+(b+2)x+b因为函数g(x)是奇函数,所以g(x)=g(x),即对任意实数x,有a(x)3+(3a+1)(x)2+(b+2)(x)+b=ax3+(3a+1)x2+(b+2)x+b从而3a+1=0,b=0,解得,因此f(x)的解析表达式为(2)由()知,所以g(x)=x2+2,令g(x)=0解得则当时,g(x)0从而g(x)在区间,上是减函数,当,从而g(x)在区间上是增函数,由前面讨论知,g(x)在区间1,2上的最大值与最小值只能在时取得,而,因此g(x)在区间1,2上的最大值为,最小值为4.解答:解:f(x)=18x2+6(a+2)x+2a(1)由已知有f(x1)=f(x2)=0,从而,所以a=9;(2)由=36(a+2)24182a=36(a2+4)0,所以不存在实a,使得f(x)是R上的单调函数5.解答:解:由得f(x)=ax2+2bx+c因为f(x)9x=ax2+2bx+c9x=0的两个根分别为1,4,所以(*)()当a=3时,又由(*)式得解得b=3,c=12又因为曲线y=f(x)过原点,所以d=0故f(x)=x33x2+12x()由于a0,所以“在(,+)内无极值点”等价于“f(x)=ax2+2bx+c0在(,+)内恒成立”由(*)式得2b=95a,c=4a又=(2b)24ac=9(a1)(a9)解得a1,9即a的取值范围1,96,设的导数为,若函数的图像关于直线对称,且 ()求实数的值 ()求函数的极值7,若函数在处有极值()求的递减区间()在曲线上是否存在一点M,使得过这一点的切线与直线垂直,若存在求出点的坐标,若不存

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论