




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
分块矩阵及其应用万毓令(重庆三峡学院数学与计算机科学学院 数学与应用数学09级2班)摘要: 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵上,并且解线性方程组的过程也表现为变换这些矩阵的过程.除了解线性方程组之外,还有大量的各种各样的问题也都是提出矩阵的概念.关键词:分块矩阵 矩阵的分块 矩阵的计算 证明 应用引言:在已有的相关文献中,分块矩阵的一些应用如下:(1)从行列式的性质出发 , 推导出分块矩阵的若干性质 , 并举例说明这些性质在行列式计算和证明中的应用 . (2)通过论述证明矩阵的分块在高等代数中的应用 ,包括用分块矩阵证明矩阵乘积的秩的定理问题 ,用分块矩阵求逆矩阵问题 ,用分块矩阵求矩阵的行列式问题 ,用分块矩阵求矩阵的秩的问题 ,利用分块矩阵证明一个矩阵是零矩阵问题.(3)给出利用分块矩阵计算行列式的方法,可分几方面讨论,当矩阵或可逆时;当矩阵,时;当与或者与可交换时;当矩阵被分成两个特殊矩阵的和时行列式的计算.(4)分块矩阵有非常广泛的应用,特别利用分块矩阵证明矩阵秩的性质显得非常简洁,而且方法也比较统一,有其独特的优越性.主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A划分成若干较小的矩阵: 其中每个小矩阵 叫做的一个子块;分成子块的矩阵叫做分快矩阵2.12 运算规则 , (k是数量) 在用规则1)时,与的分块方法须完全相同;用性质3)时,的列的分法与的行的分法须相同.1.3分块矩阵的性质及其推论 在行列式计算中 ,我们经常用到下面三条性质3: 若行列式中某行有公因子 ,则可提到行列式号外面; 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; 把行列式中的某两行互换位置 ,其值变号; 利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广. 性质 设方阵是由如下分块矩阵组成 其中 ,都是矩阵 ,又是任一级方阵 .对于矩阵 则证明 设为级单位矩阵 ,则 于是性质 设矩阵是由如下分块矩阵组成 其中 ,都是矩阵 ,又是任一阶方阵 .对于矩阵 则 证明 由 其中 是级单位矩阵 ,对上式两边同时取行列式得 性质 设方阵和写成如下形式 ,其中 ,都是 s t 矩阵,则|证明 可由中的,与,相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当为偶数时 | 当为奇时|- 可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立. 下面举例说明这些性质在行列式计算和证明中的应用. 推论 设,都是阶方阵,则有 证明 作2n 阶行列式 由拉普拉斯展开定理得又由性质并应用于列的情况,有 推论 设都是阶方阵,则有 证明 根据定性质2并应用于列的情况,有 例1 计算阶行列式 解 令则 =推论 设, 都是阶方阵 ,其中0,并且 ,则有 证明 根据性质2,因为存在,并注意到=,用乘矩阵 的第一行后加到第二行中去得从而 = 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设, 都是级方阵则有 结论告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论则说明,当一个行列式可以分成四个级数相等的方阵,时(即),2.1分块矩阵在矩阵的秩的相关证明中的应用 定理 1 秩秩,且秩秩,则秩min秩,秩4证明 令=,,则()可由线性表示秩秩,即秩秩秩令,所以即可由线性表示 秩秩,即秩秩秩 即秩 定理 2 设、都是级矩阵,若则秩秩5.证明 对分块如下:由于即即说明的各列都是的解.从而秩基础解系秩即秩秩 3.1 分块矩阵在求逆矩阵方面的应用 命题110 设是一个四分块方阵,其中为阶方阵, 为阶方阵,当与都是可逆矩阵时,则是可逆矩阵,并且 特例 当,与都可逆时,有. 当,与都可逆时,有 当,与都可逆时,有 证明 设可逆,且,其中为阶方阵,为阶的方阵.则应有 于是得到下面的等式因为可逆,用右乘(3.2)式可得代入(3.1)式得 则.用右乘(3.4)式可得 代入(3.3)式得则 可得+.所以.命题2 设是一个四分块方阵,其中为阶方阵,为阶方阵,当与()都是可逆矩阵时,则是可逆矩阵,并且 =特例 (1) 当,与都可逆时,有 (2) 当,与都可逆时,有 (3) 当,与都可逆时,有此结论参考命题1. 例1 设M,求. 解 令,. 则很容易求得,且-由命题2可得,3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果11. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H或H其中均为方阵,则.3.2.1矩阵A或B可逆时行列式|H|的计算命题 1 分别为与阶方阵. 证明 :(1)当可逆时 ,有 (3.5)(2)当可逆时 ,有= (3.6)证明 根据分块矩阵的乘法 ,有由引理知,两边取行列式即得(3.5). 根据分块矩阵的乘法 ,有两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1设分别是和矩阵. 证明 ( 3.7) (3.8)证明 只需要在命题的(3.5)中令, 即得(3.7);在(3.6)中令,即得(3.8).推论2 分别是和矩阵.证明 (3.9)证明 在推论1的(3.7)中,令,在(3.8)中,令,即得(3.9)例3 计算下面阶行列式解 令,,为阶方阵.由于,故为可逆方阵.又易知-从而由命题中得 =.例4 计算行列式解 设,其中,,.因为所以是可逆矩阵.又易知从而由命题中的结论得(2)设Q,其中B(c),C,D由于 从而由推论知,.3.2.2矩阵时行列式|H|的计算 命题 2 是两个阶方阵.则|A+C|A-C|证明 根据行列式的性质和定理,有 .例1 计算行列式.解这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设,由命题2知 行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如(分别是和矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.参考文献1. 王萼芳,石升明.高等代数,北京:高等教育出版社 第三版 ,2009.62. 王向东、周士谨 高等代数的常用方法科学出版社 1989.5月 第二版105页3. 张贤科、许莆华 高等代数学 清华出版社 1998.2月第二版 121-1244. 林瑾瑜.分块矩阵的若干性质及其在行列式计算中的应用J.广东广播电视大学学报,2006,15(2):109-112.5. 北京大学数学系几何与代数教研室前代数小组编.高等代数(第三版)M.高等教育出版社.2007:181-186.Elementary Transformation and Its ApplicationWan YuLing (Second Class of Grade 2009,Mathes and Application Mathes,College of Mathes and Camputer Science,Chongqing Three Gorges)ABSTRACT:Theory about block matrix could be used to decline high-order matrix and make its structure clearer to simplify some calculation related to matrix, it also could be used to prove some problems about matrix.In this paper,it focuses on analysing block matrix which could be applied to prove problems about the inverse of matrix and get the rank of matrix and calculate the squarematrix matrix .By quoting a number of examples , we could get that its convenient to solve many problems about calculation and provement by using block matrices. Obviously,block matrix is a very important concept in high algebra, So, it is necessary to research and comprehend
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北省任丘市2025年上半年公开招聘村务工作者试题含答案分析
- 河北省清苑县2025年上半年公开招聘村务工作者试题含答案分析
- 2025版企业员工薪酬福利管理合同
- 2025年度房地产项目代办手续专项服务与支持合同
- 2025年度豪华车队雇用与品牌推广服务合同范本
- 2025版配电箱进出口贸易合同范本解析
- 2025年度砂石资源开采与运输安全合作协议
- 2025年度土方资源开发与保护合作合同范本
- 2025标准商铺租赁合同附带商业数据分析与市场调研服务
- 2025版劳动法培训与劳动法规解读合同
- 劳务施工组织方案 劳务施工组织设计(八篇)
- 抗菌药物合理使用培训测试题(答案)
- 青藏铁路公司普速铁路维修管理办法
- 初等数论简介课件
- 《卷烟原料配方设计》配套教学课件
- 消防技术装备培训课件
- 《新能源汽车驱动电机系统检测与维修习题册》 习题参考答案(劳动)
- 介入诊疗质量安全计划与指标
- 99S203 消防水泵接合器安装图集
- 苗圃规章制度范本
- 响水县粮食购销总公司大有粮库粮食烘干设备招标采购
评论
0/150
提交评论