




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2005高考排列组合2.(北京卷)北京财富全球论坛期间,某高校有14名志愿者参加接待工作若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为_3.(北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有_4.(福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有_5(湖北卷)把一同排6张座位编号为1,2,3,4,5,6的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是_6(湖北卷)以平行六面体ABCDABCD的任意三个顶点为顶点作三角形,从中随机取出两个三角形,则这两个三角形不共面的概率p为_7.(湖南卷)4位同学参加某种形式的竞赛,竞赛规则规定:每位同学必须从甲乙两道题中任选一题作答,选甲题答对得100分,答错得100分;选乙题答对得90分,答错得10分.若4位同学的总分为0,则这4位同学不同得分情况的种数是_8.(江苏卷)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱多代表的化工产品放在同一仓库是安全的,现打算用编号为、的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为_9.(江西卷)将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( A )10.(江西卷)将1,2,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为_11.(全国卷)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 种。12.(全国卷)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有 个.13.(上海卷)某班有50名学生,其中 15人选修A课程,另外35人选修B课程从班级中任选两名学生,他们是选修不同课程的学生的慨率是 (结果用分数表示)14.(天津卷)设,则_15(辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有 个.(用数字作答)16(浙江卷)从集合 P,Q,R,S与0,1,2,3,4,5,6,7,8,9中各任限2个元素排成一排(字母和数字均不能重复)每排中字母Q和数字0至多只能出现一个的不同排法种数是_(用数字作答)17(浙江卷)从集合O,P,Q,R,S与0,1,2,3,4,5,6,7,8,9中各任限2个元素排成一排(字母和数字均不能重复)每排中字母O,Q和数字0至多只能出现一个的不同排法种数是_(用数字作答)18. (重庆卷)若10把钥匙中只有2把能打开某锁,则从中任取2把能将该锁打开的概率为_.2006高考排列组合1(北京卷)在这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有_2(福建卷)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有_3(湖南卷)某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有_4(湖南卷)在数字1,2,3与符号,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是_5(全国卷I)设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有_6(全国II)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有_7(山东卷)已知集合A=5,B=1,2,C=1,3,4,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为_(A)33 (B) 34 (C) 35 (D)368(天津卷)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有_9(浙江卷)函数f:|1,2,3|1,2,3|满足f(f(x)= f(x),则这样的函数个数共有_10(重庆卷)将5名实习教师分配到高一年级的个班实习,每班至少名,最多名,则不同的分配方案有_11(重庆卷)高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是_12(湖北卷)某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 。(用数字作答)13(湖北卷)安排5名歌手的演出顺序时,要求某名歌手不第一个出场,另一名歌手不最后一个出场,不同排法的总数是 .(用数字作答)14(江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答)。15(辽宁卷)5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体比赛,则入选的3名队员中至少有一名老队员,且1、2号中至少有1名新队员的排法有_种.(以数作答) 16(全国卷I)安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_种。(用数字作答)17(陕西卷)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种18(天津卷)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答)19(上海春)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有 种不同的播放方式(结果用数值表示).2007高考排列组合1、(全国1文5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有_2、(全国2理10)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有_3、(全国2文10)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有_4、(北京文5)某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有_5、(北京理5)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有_6、(福建文12)某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000”到“9999”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为_7、(辽宁文12)将数字1,2,3,4,5,6拼成一列,记第个数为,若,则不同的排列方法种数为_8、(四川理10)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有_9、(四川文9)用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有_10、(全国1理13)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_种.(用数字作答)解从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,不同的选法共有_种.11、(广东理12)如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_条,这些直线中共有对异面直线,则;f(n)=_(答案用数字或n的解析式表示) 12、(天津理16) 如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有_种(用数字作答).13、(天津文16)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有种(用数字作答)14、(12江苏)某校开设9门课程供学生选修,其中三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有种不同选修方案。(用数值作答)15、(浙江理14文16)某书店有11种杂志,2元1本的8种,1元1本的3种. 小张用10元钱买杂志(每种至多买一本,10元钱刚好用完),则不同买法的种数是_16、(海、宁16)某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种(用数字作答)17、(重庆理15)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有_种。(以数字作答)18、(重庆文15)要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为.19、(辽宁理16)将数字1,2,3,4,5,6拼成一列,记第个数为,若,则不同的排列方法有_种(用数字作答)20、(陕西理16)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有_种.(用数字作答)21、(陕西文15)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有_种.(用数字作答)二项式定理1、(全国1理10)的展开式中,常数项为15,则n=_ 2、(湖北理3)如果的展开式中含有非零常数项,则正整数的最小值为_3、(重庆文4)(2x-1)6展开式中x2的系数为_4、(天津理11) 若的二项展开式中的系数为则.5、已知,则( 的值等于 .6、(湖南理15)将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,第次全行的数都为1的是第 行;第61行中1的个数是 第1行 1 1第2行 1 0 1第3行 1 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省景宁畲族自治县2025年上半年事业单位公开遴选试题含答案分析
- 农业种植:科学与艺术
- 闽教版英语五年级下册unit4
- 河北省深泽县2025年上半年公开招聘城市协管员试题含答案分析
- 河北省曲阳县2025年上半年公开招聘村务工作者试题含答案分析
- 河北省临漳县2025年上半年公开招聘城市协管员试题含答案分析
- 2025版认缴制下旅游文化股份转让合作协议
- 2025版城市综合体日常保洁与商业环境维护合同
- 2025年度健身房店铺转让与健身设备租赁合同
- 2025年度酒店行业客户售后服务协议范本
- 生产安全事故应急预案评估报告
- 人教版(2024)七年级下册英语各单元必会重点短语和句型默写版(含答案)
- 劳动合同标准合同(2025年版)
- 测量不确定度评定第2部分基础知识
- 输液反应应急预案及流程
- T-CDAA 003-2024 大数据应用平台 数据服务运营管理技术要求
- 针灸理疗院感风险评估与应对措施
- 铜矿石购销合同范本
- 小学生学习与发展课件
- 在家办公申请书
- 水库巡查基本知识
评论
0/150
提交评论