




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一课时第一课时 1 1、1 1集合的概念(一)集合的概念(一) 集合集合 一、学习目标一、学习目标 1 1、理解集合的意义,会判断一组对象是否组成集合、理解集合的意义,会判断一组对象是否组成集合 ;掌握元素与集合的关系的表示法以及集合中元素的特性;掌握元素与集合的关系的表示法以及集合中元素的特性 。 2 2、初步知道集合的表示法,能正确使用常用数集的、初步知道集合的表示法,能正确使用常用数集的 名称及其符号。名称及其符号。 更多资源 二、例题析解二、例题析解 例例1 1 判断下列各组对象能否描述为集合,若能,则判断下列各组对象能否描述为集合,若能,则 用集合表示出来,若不能,请说明理由。用集合表示出来,若不能,请说明理由。 (1 1)大于)大于-6-6而小于而小于6 6的偶数;的偶数; (2 2)很小的有理数;)很小的有理数; (3 3)东禅中学的所有学生;)东禅中学的所有学生; (4 4)常青林场的所有大树;)常青林场的所有大树; (5 5)全体自然数;)全体自然数; (6 6)所有单项式。)所有单项式。 解解 由集合中元素的确定性知(由集合中元素的确定性知(1 1)、()、(3 3)、()、(5 5)、()、(6 6)是集合,()是集合,( 2 2)、()、(4 4)不构成集合。)不构成集合。 (1 1)-4-4,-2-2,0 0,2 2,44; (3 3) 东禅中学的学生东禅中学的学生 ; (5 5) 自然数自然数 ; (6 6) 单项式单项式 。 说明说明 集合的表示,必须严格遵守规定。如(集合的表示,必须严格遵守规定。如(5 5),若写成),若写成 所有自然所有自然 数数 、 全体自然数全体自然数 、 自然数集自然数集 是错误的,因为符号是错误的,因为符号本身就具有本身就具有“ “所所 有有” ”、“ “全体全体” ”、“ “集集” ”的意思了。的意思了。 例例2 2 判断下列说法是否正确,请说明理由。判断下列说法是否正确,请说明理由。 (1 1)方程)方程 的根的集合是的根的集合是11,11。 (2 2)集合集合-1-1,0 0,22和集合和集合22,0 0,-1-1是不同的集合。是不同的集合。 (3 3)由)由-2-2, ,0 0,1 1,2 2这些数组成的集合有这些数组成的集合有5 5个元素。个元素。 (4 4)集合)集合44与与6 6的公倍数的公倍数 ,33与与4 4的公倍数的公倍数 是不同的集合。是不同的集合。 解解 (1 1)错,因为集合中元素是互异性的,应为)错,因为集合中元素是互异性的,应为11。 (2 2)错,因为集合中元素是无序的。)错,因为集合中元素是无序的。 (3 3)错,由元素的互异性知应为)错,由元素的互异性知应为4 4个元素,即个元素,即-2-2,0 0,1 1,2 2。 (4 4)错,因为这两个集合的元素均是)错,因为这两个集合的元素均是1212的倍数,故是相同的集合。的倍数,故是相同的集合。 例例3 3 (1 1)用符号)用符号 填空:填空: 设设A A为偶数集,为偶数集,B B为奇数集,若为奇数集,若 则则 (i i) (ii)a+b_B (iii)a.b_A (iv)a.b_B (ii)a+b_B (iii)a.b_A (iv)a.b_B (2 2)给出下列关系()给出下列关系(i i) (ii ii) ( (iii) (iv) iii) (iv) (v) (v) (vi) (vi) 其中正确的是其中正确的是。 解解 (1 1)( (i) (ii) (iii) (iv) i) (ii) (iii) (iv) (2 2)(i),(iv),(v)(vi)(i),(iv),(v)(vi) 三、课堂练习三、课堂练习 教科书的教科书的“ “练习练习” ”的的1 1、2 2 四、归纳小结四、归纳小结 1 1、某些指定的对象集在一起就形成一个集合,集合中的每个对象、某些指定的对象集在一起就形成一个集合,集合中的每个对象 叫做集合的元素,把集合的元素写在大括号叫做集合的元素,把集合的元素写在大括号 里就是一个集合里就是一个集合 。 2 2、构成集合的元素必须是确定的、互异的、无序的,这就是集合、构成集合的元素必须是确定的、互异的、无序的,这就是集合 中元素的三大特性。中元素的三大特性。 3 3、元素与集合的关系、元素与集合的关系“ “属于属于” ”或或“ “不属于不属于” ”的关系,的关系,“ “属于属于” ”用符号用符号“ “ ” ”表示,表示,“ “不属于不属于” ”用符号用符号“ ”“ ”或或“ ”“ ”表示表示 4 4、三种常用数集及其符号:三种常用数集及其符号: N=N=自然数自然数=非负整数非负整数 Z=Z= 整数整数 = =正整数正整数= = =非非0 0整数整数 (注:(注: (或或 )均表示在自然数集内排除)均表示在自然数集内排除“0”“0”的集合,的集合,QQ、Z Z、 R R内排除内排除“0”“0”的集合也可仿此书写)的集合也可仿此书写) 五、能力训练五、能力训练 1 1、选择题、选择题 (1 1)下面各组对象:)下面各组对象:(a a)被被2 2除余除余1 1的的整数;(整数;(b b)第一象限内的第一象限内的 点;(点;(c c)很小的自然数;(很小的自然数;(d d) 的近似植;(的近似植;( e e)面积为面积为1 1的三角的三角 形,其中能组成集合的是(形,其中能组成集合的是( ) (A)(a)(b) (B)(a)(e) (C)(b)(e) (A)(a)(b) (B)(a)(e) (C)(b)(e) (D D)()(a a)()(b b)()(e e) (2 2)下面四个命题(下面四个命题(a a)集合集合N N中最小的数是中最小的数是1 1;(;(b b)0 0不是自然不是自然 数;(数;(c c) (d d) 其中正确的其中正确的 命题个数是(命题个数是( ) (A A)0 0 (B B)1 1 (C C)2 2 (D D)3 3 (3 3)若若 ( ) (A A) 奇数奇数 (B B) 偶数偶数 (C C)偶数偶数 (D D)奇数奇数 (4 4)设)设x,yx,y都是非零实数,则都是非零实数,则 可能取的值可能取的值 的集合是(的集合是( ) (A A)3 3 (B B)33,1 1 (C C)33,-1 -1 (D D)33,-1-1,11 2 2、填空题、填空题 (1 1)实数集)实数集11,x x,2x2x中元素中元素x x应满足应满足 (2 2)方程)方程 的解集是的解集是 (3 3)若)若 ,集合,集合A A是由数是由数 组成的集合,若,则组成的集合,若,则yAyA。 (4 4)若若 ,则不等式,则不等式 的解集是的解集是。 3 3、解答题解答题 (1 1)已知集合)已知集合A A是方程是方程 的的 解集解集. . (i i)若若A A中只有一个元素,求中只有一个元素,求a a的值并写出的值并写出A A。 (ii ii)若若A A中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高频开关直流电源柜项目投资可行性研究分析报告(2024-2030版)
- 电子产品制造技术专业教学标准(高等职业教育专科)2025修订
- 2025年中国DLP光显屏行业市场调查研究及发展趋势预测报告
- 采掘知识培训课件
- 2025年中国柑桔行业市场全景评估及发展战略规划报告
- 2024-2030年中国云VR行业发展运行现状及投资潜力预测报告
- 2025年中国制糖行业发展运行现状及投资潜力预测报告
- 2025年中国蓝宝石长晶炉行业发展趋势预测及投资战略咨询报告
- 2025年 云南省化工仪表操作证理论考试练习题附答案
- 2025年 特种设备作业人员-叉车证理论考试练习题附答案
- 2024年陕西省中考道德与法治真题(A卷)(含解析)
- EN71-1 2014 A1-2018 玩具安全 第1部份 物理和机械性能-中文版
- DLT 572-2021 电力变压器运行规程
- 新疆维吾尔自治区石河子市五年级数学期末高分通关试卷详细答案和解析
- DL∕ T 1166-2012 大型发电机励磁系统现场试验导则
- 湿热灭菌工艺验证方案1
- 2024年广东省初中学业水平考试生物押题卷
- 网络安全知识竞赛考试题库300题(含答案)
- 国开电大2023年春季期末考试《机械CAD、CAM》试题及答案(试卷代号1119)
- 审计 第7版 课件 第10章采购与付款循环审计
- (高清版)DZT 0145-2017 土壤地球化学测量规程
评论
0/150
提交评论