




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课前热身 1 1 2.函数f(x)=2x2-mx+3,当x(-,-1时是减 函数,当x(-1,+)时是增函数,则f(2)= _. 19 利用函数的单调性求函数的最值 3、求函数f(x)x 的最大值和最小值 x y o 1 2 3 4 5 -1 123-1-2-3 观察下图,思考并讨论以下问题: (1)这两个函数图象有什么共同特征吗? (2)相应的两个函数值对应表是如何体现这些特征的? 一、引入新课 x y o 1 2 3 -1 12-13 x -3 -2 -1 0123 f(x)=|x| 32 1 0123 x -3 -2 -1 0123 f(x)=x2 94 1 0149 这两个点的坐标 有什么关系?(x,f(x)(-x,f(-x) 函数的图象关于y轴对称 当自变量任取两个互为相反数的值时, 对应的函数值相等。 x-3-2 -10123 f(x)=x29410149 二、新课讲解 一般地,如果对于函数f(x)的定义域内任意 一个x,都有f(-x)=f(x), 那么函数f(x) 就叫做 偶函数. 思考:定义中“任意一个x,都有f(- x)=f(x)成立”说明了什么? 说明f(-x)与f(x)都有意义 , 即-x、x必须同时属于定义域 , 因此偶函数的定义域关于原点对称。 7 7 练习1:判断下面两个函数是否是偶函数?并说明理由. (1)f(x)=5x2+3, x-3,2; (2)f(x)= 判断函数是否为偶函数,必须首先 讨论函数的定义域是否关于原点对称 x y o 1 2 3 4 5 -1 123-1-2-3 观察下图,思考并讨论以下问题: (1)这两个函数图象有什么共同特征吗? (2)相应的两个函数值对应表是如何体现这些特征的? x y o 1 2 3 -1 12-13 x -3 -2 -1 0123 f(x)=x 32 1 0123 x -3 -2 -1 0123 f(x)=1/x / / 这两个点的坐标 有什么关系?(x,f(x) (-x,f(-x) 函数的图象关于原点对称 -3 -2 -1 0123 思考:那么关于原点对称的点的坐标之间有什么关系呢? 当自变量任取两个互为相反数的值时, 对应的函数值互为相反数。 x -3-2 -1 0123 f(x)=x -3-2 -1 0123 1010 一般地,如果对于函数f(x)的定义域内任意 一个x,都有f(-x)=-f(x), 那么函数f(x) 就叫做 奇函数. 思考:定义中“任意一个x,都有f(- x)=f(x)成立”说明了什么? 说明f(-x)与f(x)都有意义 , 即-x、x必须同时属于定义域 , 因此奇函数的定义域关于原点对称的。 1111 由此可见,定义域关于原点对称是 函数具有奇偶性的前提条件。 1212 2、既不是奇函数也不是偶函数的函数称为非奇非 偶函数。 1、如果函数f(x)是奇函数或偶函数,就说函数f(x) 具有奇偶性.函数的奇偶性是函数的整体性质。 3、定义域关于原点对称是函数具有奇偶性的前提 条件。 4、具有奇偶性的函数的图象的特征: (1).偶函数的图象关于y轴对称 (2).奇函数的图象关于原点对称 函数奇偶性定义中应注意: 奇偶性是对函数的整个定义域而言的. A B D E A1 B1 C1 D1 E1 C H Ox y 例 已知函数 y=f(x) 是偶函数,它在y轴右边的图象 如下图所示,画出函数 y=f(x) 在y轴左边的图象。 已知函数 y=f(x) 是奇函数,它在y轴右边的图象 如下图所示,画出函数 y=f(x) 在y轴左边的图象。 O x y A B C D E A1 B1 C1 D1 E1 四、例题讲解 解: (1)对于函数f(x)=x4, 其定义域为(- ,+ ) 对定义域内的每一个x,都有 f(-x)=(-x)4=x4=f(x) 函数f(x)=x4为偶函数. 判断函数奇偶性的一般步骤: 1、看函数的定义域是否关于原点对称,若不对称, 则得出结论:该函数无奇偶性。若定义域对称,则 2、计算f(-x),若等于f(x),则函数是偶函数;若 等于-f(x),则函数是奇函数。若两者都不满足,则 函数既不是奇函数也不是偶函数。 注意:1、若可以作出函数图象的,直接观察图象是否 关于y轴对称或者关于原点对称。 2、判断函数奇偶性的方法: 定义法 图象法 (1) (2)(3 ) (4 ) 偶函数 非奇非偶函数奇函数 非奇非偶函数 判断下列函数的奇偶性 o o o o x x x x y y y y y 0 y x 偶函数 y x 0 y 是奇函数也是偶函数 (5 ) (6 ) 函数按
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字智慧方案5494丨商业办公综合体智能化系统汇报方案
- 液压马达的振动与噪音抑制考核试卷
- 环境地质工程课件
- 《能量分配器件》课件
- 2025年嘧菌酯合作协议书
- 小学劳动教育意义及建议
- 2025年工程瑞雷波仪项目建议书
- 2025年环境控制系统项目合作计划书
- 2025年重症监护临床信息系统项目建议书
- 医学显微镜技术原理与应用
- 超氧化物歧化酶课件
- 第四章-国防动员
- 设备管理培训课件-设备管理的战略规划
- 学术报告计算机
- 智能扫地机器人计划书
- 行政强制法知识讲座
- 医学社会学与医患关系教学设计
- 人教版小学三年级下册道德与法治全册教案
- 民间游戏体育游戏课程设计
- 停车场运营维护管理投标方案技术标
- 三、胆石症课件
评论
0/150
提交评论