




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
A simple Test For the Consecutive Ones Property Without PC-trees! Consecutive 1s Property of matrices Given a (0,1)- matrix M, does there exist a PERMUTATION of the COLUMINS of M such that the 1s in the ROWS are consecutive? 1 2 3 4 1 1 0 0 1 0 0 1 0 1 1 0 3 2 1 4 0 1 1 0 0 0 1 1 1 1 0 0 Consecutive requirement on the rows Each row i of M can be viewed as a requirement that those columns with a 1 in row j must be consecutive. Booth and Lueker 1976 showed that the consecutive ones property can be tested using P -Q trees in linear time. They process the consecutive requirement in a row by row fashion. P-Q Trees Two types of internal nodes: P-nodes & Q-nodes Children of a P-node can be “permuted arbitrarily” Children of a Q-node can only be “reversed” Q P 12 34 L(T) = all permutations generated by T In the example, L(T) = 1234,1243,4321,3421 Intermediate On-Line Operations Strictly Overlapping Relationships Two columns are say, to overlap strictly if they overlap but none is contained in the other. Such a pair of rows implies the following column partition: 1 - - - - - - 1 1 - - - 1 1 - - - - 1 u v Ideal Situation If there is a vertex ordering v1 , v2 ,vm such that each vi strictly overlaps with some vj with j i, then it is trivial to test the consecutive ones property Partition Before 1- - - - - - 1 1 - - - 1 1 - - - - 1 After 1 - - - 1 1 - - 1 1 - - 1 1 - - - 1 1 - - - - 1 The General Case (I) Define the graph G on the set of rows whose edge set consists of those strictly overlapping pairs of columns. Each connected component of G satisfies the above “ideal situation”. The corresponding submatrices are called prime The matrix satisfies the COP iff each of its prime submatrices does An example of the Graph G 1 2 3 4 5 6 7 8 9 10 1 6 4 3 7 9 8 10 5 2 The General Case (II) However, we cannot afford to compute all the edges in G, which could take O(r2 ) time. We shall compute a subset of edges that contain a spanning tree of each connected component. Note that the process of obtaining the component actually decompose the matrix into prime submatrices An Efficiency Note The # of strictly adjacent pairs is |A| |B| . Let a, b be the least indexed rows in A,B, respectively. To connect A,B, it suffices to make a adjacent to all rows in B and b adjacent to all rows in A. A B a b An Efficiency Note The # of strictly adjacent pairs is |A| |B| . Let a, b be the least indexed rows in A,B, respectively. To connect A,B, it suffices to make a adjacent to all rows in B and b adjacent to all rows in A. A B a b Representative Rows vA and vB v v 1/2 1/2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Let v be adjacent to both A and B. But, vA and vB are forbidden to be made adjacent to A,B vA vB vA vB vB vA Classifying the neighbors of a row u u B D C A 1. Append A(u),B(u) and D(u) to PT(u). 2. Append uD to PT(w) for all w in C(u) whose index is smaller than Ind(uD) 3. Delete the row u and use an artificial column u to replace the region covered by columns of u 4. Add edges from u to nodes of PT(u)-FB(u) 6 1 4 5 3 2 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 16 1 2 3 5 6 4 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 .5 0 1 1 1 1 1 0 0 0 0 0 0 0 4 5 2 63 1632 2 3 5 6 4 6 4 5 3 16 5 32 1 .5 0 0 1 0 0 0 0 0 0 0 1 1 0 0 1 .5 1 1 3 5 6 4 0 .5 0 6 4 5 16 45 32 1 1 0 1 1 1 0 0 .5 5 6 4 6 5 16 45 32 .5 .5 1 0 0 .5 5 6 Lemma 1 If uj FB(ui)PT(ui), ij, ui and uj are connected in G Lemma 2 If one of the ui and uj (ij) is contained in the other and the containment is changed before iteraion i, ui and uj are connected in G. 0.5 ui ui uj uj uk uk 0 The sub-graph G generated by the algorithm G is a spanning sub-graph of G(M) with the same components. Claim 1. G is a subgraph of G(M). If(ui,uj) G(M), (ui,uj) G Claim 2. if(ui, uj) G(M), then ui and uj belong to the same component of G(M) Claim 1 G is a subgraph of G(M) ukB ukA ukuk 0.5 0.5 In this case, ui is in FB(uj) and uj is in FB(ui) 1. ui and uj are independent originally. 2. ui is contained in uj originally. (Lemma 2) Claim 2 If(ui, uj) E(G(M), then ui and uj belong to the same component of G. Let ui,uj be the minimal bad pair. (for all other bad pair (up,uq) either ip or jq) Consider the changing of intersection relationship “intersect” to “contain” (case 1) “intersect” to “independent” (case 2) Case 1 :“intersect” to “contain” ui and uj intersect originally. Let one of the ui and uj be contained in the other after iteration k. Consider the following two subcases: Case 1.1: Both ui and uj overlap uk. Case 1.2: Only one of the ui and uj (say, z) overlaps uk ( The other is named eA) Case 1.1 Both ui and uj overlap uk uk uk ui is connected to uj through uk ui ui uj uj Case 1.2 one of ui and uj (say, z) overlaps uk z eA z eA uk z eA ukA uk is connected to z and ukA. We shall verify if ukA is connected to eA. uk Case 1.2 Only one of the ui and uj (said) z overlaps uk Case (i) uka is contained in eA originally By lemma 2, uka is connected to eA. Case (ii) uka contains eA originally z eA ukA uk -1(eA) -1(ukA) -1(z) If z is deleted at iteration t (t -1(eA) ) z eA ukA uk t -1(eA) -1(z) -1(utD) eA connects utD. utD connects t. t connects z. Case 1.2 Case (iii) ukA is indepenet eA originally Let ukA overlap eA atfer interation t. ukA is connected to eA via ut Case (iv) ukA intersect eA originally (ukA, eA) becomes the minimal bad pair. (a contradiction) It concludes that ukA is connected to eA in G such that eA and z is connected in G. Case 2 “intersect” to “independent” ui and uj intersect originally. Let one of the ui and uj become indepedent after iteration k. consider the following two subcases: Case 2.1: Both ui and uj overlap uk. Case 2.2: Only one of the ui and uj (said) z intersects uk (The other is named eA) Case 2.1 Both ui and uj overlap uk uk uk ui is connected to uj through uk in G ui ui uj uj Case 2.2 Only one of the ui and uj (say, z) intersects uk z eA z eA z eA ukA uk is connected to z and ukA. We shall verify if ukA is connected to eA. uk Case 2.2 Only one of the ui and uj (said) z intersects uk (i) ukA is independent to eA or one is contained in the other originally. Check Claim 1 (ii) ukA intersects eA originally. If ukA is not connected to eA, (ukA ,eA) becomes the minimal bad pair. (a contradiction) 1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7JaMdPhSkVnZq$u*x-A2D5GcOfRiUmXp!s&v)z0C3F7IaMdPgSkVnYq$t*x-A1D5G8JbNeQiTlWo#r%u(y+B3E6H9LcOfRjUmYp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYpx-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x-A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w- z1C4G7JaMePhTkWnZr$u*B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMdPhSkWnZq$u*x-A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7fQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w)z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w- z1D4G7JbMePhTkWoZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLdOgSZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w- z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcNfRiUlXp#s%v)y0C3F6IaLdkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5LcOgRjVmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdSkVnZq$u*x- A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y4F7JaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNeQiTlXo#r%v(y+B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$y+B2E6H9LcOfRjUmXp!s&w)z0C4F7IaMdPhSkVnZq$t*x-A2D5G8KbNemXp!s&v)z0C3F7IaMdPgSkVnYq$t*w- A1D5G8JbNeQhTlWo#r%u(y+B2E6H9LcOfRjUmXp!s&w)z0C4FbMeQhTlWoZr%u(x+B2E6H9KcOfRiUmXp!s&v)z0C3F7IaLdPgSkVnYq$t*w-A1D5G8JbNeQhTls&v)y0C3F6IaLdPgSjVnYq!t*w-A1D4G8JbMeQhTlWoZr%u(B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$u(x+A2E5H9OgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2D5HOgRjUmYp!s&w)z1C4F7JaMdPhSkWnZq$u*x-A2D5H8KbNfQiTlXo#s%z0C4F7IaMdPhSkVnZq$t*x-A1D5G8KbNeQiTlWo#r%v(y+B3E6HPgSkVnYq$t*w-A1D5G8JbNeQhTlWo#r%u(y+B2E6H9LgSjVnYq!t*w- z1D4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUmXp#-z1D4G7JbMePhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s%v)y0C3F6IaLdOgWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOkWnZq$u*x-A2D5G8KbNfQiTlXo#r%v(y0B3E6I9LcOgRjVmYp!tA1D5G8KbNeQiTlWo#r%v(y+B3E6H9LcOgRjUmYp!s&w1D4G8JbNeQhTlWoZr%u(y+B2E6H9KcOfRjUmXp!s&vD4G8JbMeQhTkWoZr%u(x+B2E5H9KcOfRiUq!t&w-z1C4G7JbMePhTkWnZry0B3E6I9LcOgRjVmYp!t&w)z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcRjUmYp!s&w)z0C4F7JaMdPhSkVnZq$u*x- A2D5G8KbNfQiXp!s&v)z0C4F7IaMdPgSkVnZq$t*x-A1D5G8KbNemXp#s&v)y0C3F7IaLdPgSjVnYq$t*w-A1D4G8JbNeQhTlWoZr%u(C3F6IaLdOgSjVnYq!t*w-z1D4G8JbMeQhTkWoZr$uB3F6I9LdOgRjVmYq!t&w-z1C4G7JbMePhTkWnZr$u(x+A2E5H8KcRjVmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1CKbNfQiTlXo#r%v(y0B3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w- z1C4G7JbMePhTkWnZr$u*x3E6I9LcOgRjUmYp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3F6I9LdOgRjVmYq!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUp!t&w)z1C4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiUlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)4F7JaMePhSkWnZq$u*x+A2D5H8KbNfQiTlXo#s%v(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6IaLdOgSjVmYq!t&w- z1D4G7JbMePhTkWoZr$u0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2E5H8KcNfQiUlXp#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$uB3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhTkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr(y0B3E6I9LdOgRjVmYp!t&w-z1C4G7JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w- z1D4G7JbMePhTkWoZr$u(x+A2E5H9KcNfRiUlXp#s%v)y07JaMePhSkWnZr$u*x+A2D5H8KcNfQiUlXo#s%v)y0B3F6I9LdOgSjVmYq!t&w-z1D4G7JbMePhTkWoZr$
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 创新平台建设模式-洞察及研究
- 农林系统碳汇提升-洞察及研究
- 轨道空间站结构优化-洞察及研究
- 2025年事业单位笔试-河北-河北医学基础知识(医疗招聘)历年参考题库典型考点含答案解析
- 预加载安全防护措施-洞察及研究
- 预制构件加工厂管理与控制方案
- 2025年事业单位笔试-山东-山东超声医学(医疗招聘)历年参考题库典型考点含答案解析
- 堤防工程绿化修复与维护方案
- 2025年事业单位笔试-天津-天津卫生事业管理(医疗招聘)历年参考题库典型考点含答案解析
- 数字媒介下的叙事融合-洞察及研究
- 初中英语新课程标准测试试题及答案3套
- 如何开展课题研究
- 英语选修4单词表
- 炼钢厂电工应知应会考试题库500题(含各题型)
- GB/T 5069-2007镁铝系耐火材料化学分析方法
- GB/T 3840-1991制定地方大气污染物排放标准的技术方法
- 旅游区奖惩制度管理办法
- 小学语文人教六年级上册《童年》整书阅读课件
- 幼儿舞蹈《蜗牛》舞蹈教案
- 生物药剂学:第七章 非线性药物动力学
- 组合式空调机组各功能段介绍(课堂PPT)
评论
0/150
提交评论