圆周角定理中考题含解析.doc_第1页
圆周角定理中考题含解析.doc_第2页
圆周角定理中考题含解析.doc_第3页
圆周角定理中考题含解析.doc_第4页
圆周角定理中考题含解析.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆周角定理中考题(含解析)一解答题(共4小题)1已知ABC,以AB为直径的O分别交AC于D,BC于E,连接ED,若ED=EC(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长2如图,O的半径为1,A,P,B,C是O上的四个点,APC=CPB=60(1)判断ABC的形状:;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积3已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D()如图,若BC为O的直径,AB=6,求AC,BD,CD的长;()如图,若CAB=60,求BD的长4如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C,(1)求证:CBPD;(2)若BC=3,sinP=,求O的直径圆周角定理中考题(含解析)参考答案与试题解析一解答题(共4小题)1(2016宁夏)已知ABC,以AB为直径的O分别交AC于D,BC于E,连接ED,若ED=EC(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长【解答】(1)证明:ED=EC,EDC=C,EDC=B,B=C,AB=AC;(2)方法一:解:连接AE,AB为直径,AEBC,由(1)知AB=AC,BE=CE=BC=,CDECBA,CECB=CDCA,AC=AB=4,2=4CD,CD=方法二:解:连接BD,AB为直径,BDAC,设CD=a,由(1)知AC=AB=4,则AD=4a,在RtABD中,由勾股定理可得:BD2=AB2AD2=42(4a)2在RtCBD中,由勾股定理可得:BD2=BC2CD2=(2)2a242(4a)2=(2)2a2整理得:a=,即:CD=2(2015德州)如图,O的半径为1,A,P,B,C是O上的四个点,APC=CPB=60(1)判断ABC的形状:等边三角形;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于的什么位置时,四边形APBC的面积最大?求出最大面积【解答】证明:(1)ABC是等边三角形证明如下:在O中BAC与CPB是所对的圆周角,ABC与APC是所对的圆周角,BAC=CPB,ABC=APC,又APC=CPB=60,ABC=BAC=60,ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又APC=60,APD是等边三角形,AD=AP=PD,ADP=60,即ADC=120又APB=APC+BPC=120,ADC=APB,在APB和ADC中,APBADC(AAS),BP=CD,又PD=AP,CP=BP+AP;(3)当点P为的中点时,四边形APBC的面积最大理由如下,如图2,过点P作PEAB,垂足为E过点C作CFAB,垂足为FSAPB=ABPE,SABC=ABCF,S四边形APBC=AB(PE+CF),当点P为的中点时,PE+CF=PC,PC为O的直径,此时四边形APBC的面积最大又O的半径为1,其内接正三角形的边长AB=,S四边形APBC=2=3(2014天津)已知O的直径为10,点A,点B,点C在O上,CAB的平分线交O于点D()如图,若BC为O的直径,AB=6,求AC,BD,CD的长;()如图,若CAB=60,求BD的长【解答】解:()如图,BC是O的直径,CAB=BDC=90在直角CAB中,BC=10,AB=6,由勾股定理得到:AC=8AD平分CAB,=,CD=BD在直角BDC中,BC=10,CD2+BD2=BC2,易求BD=CD=5;()如图,连接OB,ODAD平分CAB,且CAB=60,DAB=CAB=30,DOB=2DAB=60又OB=OD,OBD是等边三角形,BD=OB=ODO的直径为10,则OB=5,BD=54(2013黔西南州)如图,AB是O的直径,弦CDAB与点E,点P在O上,1=C,(1)求证:CBPD;(2)若BC=3,sinP=,求O的直径【解答】(1)证明:C=P又1=C1=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论