




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2010届高考数学复习 强化双基系列课件 圆锥曲线 轨迹方程 基本知识概要: 一、求轨迹的一般方法: 1直接法:如果动点运动的条件就是一些几何量的 等量关系,这些条件简单明确,易于表述成含x,y的 等式,就得到轨迹方程,这种方法称之为直接法。 用直接法求动点轨迹一般有建系,设点,列式,化简 ,证明五个步骤,最后的证明可以省略,但要注意“ 挖”与“补”。 2定义法:运用解析几何中一些常用定义(例如圆 锥曲线的定义),可从曲线定义出发直接写出轨迹 方程,或从曲线定义出发建立关系式,从而求出轨 迹方程。 3.代入法:动点所满足的条件不易表述或求出,但形 成轨迹的动点P(x,y)却随另一动点Q(x,y)的运动而 有规律的运动,且动点Q的轨迹为给定或容易求得, 则可先将x,y表示为x,y的式子,再代入Q的轨迹方 程,然而整理得P的轨迹方程,代入法也称相关点法 。 4.参数法:求轨迹方程有时很难直接找到动点的横 坐标、纵坐标之间的关系,则可借助中间变量(参 数),使x,y之间建立起联系,然而再从所求式子中 消去参数,得出动点的轨迹方程。 5.交轨法:求两动曲线交点轨迹时,可由方程直接 消去参数,例如求两动直线的交点时常用此法,也 可以引入参数来建立这些动曲线的联系,然而消去 参数得到轨迹方程。可以说是参数法的一种变种。 6.几何法:利用平面几何或解析几何的知识分析图 形性质,发现动点运动规律和动点满足的条件,然 而得出动点的轨迹方程。 7.待定系数法:求圆、椭圆、双曲线以及抛物线的方 程常用待定系数法求 . 8.点差法:求圆锥圆锥 曲线线中点弦轨轨迹问题时问题时 ,常把两 个 端点设为设为 并代入圆锥曲线方 程,然而作差求出曲线的轨迹方程。 二、注意事项: 1直接法是基本方法;定义法要充分联想定义、灵 活动用定义;代入法要设法找到关系式x=f(x,y), y=g(x,y);参数法要合理选取点参、角参、斜率参等 参数并学会消参;交轨法要选择参数建立两曲线方 程再直接消参;几何法要挖掘几何属性、找到等量 关系。 2要注意求得轨迹方程的完备性和纯粹性。在最后 的结果出来后,要注意挖去或补上一些点等。 典型例题选讲 一、直接法题型: 例1 已知直角坐标标系中,点Q(2,0),圆圆C的方程 为为 ,动点M到圆C的切线长与 的 比等于常数 ,求动点M的轨迹。 说明:求轨迹方程一般只要求出方程即可,求轨迹 却不仅要求出方程而且要说明轨迹是什么。 练习练习 :(待定系数法题题型)在 中, ,且 的面积为积为 1,建立适当的坐标标系,求以M,N为为焦 点,且过过点P的椭圆椭圆 方程。 二、定义义法题题型: 例2 如图,某建筑工地要挖一个横截面为半圆的柱 形土坑,挖出的土只能沿AP、BP运到P处,其中 AP=100m,BP=150m,APB=600,问怎能样运 才能最省工? 练习: 已知圆O的方程为 x2+y2=100,点A的坐标为 (-6,0),M为圆O上任一点,AM的垂直平分线 交OM于点P,求点P的方程。 三、代入法题型: 例3 如图,从双曲线x2-y2=1上一点Q引直线 x+y=2的垂线,垂足为N。求线段QN的中点P的轨 迹方程。 练习:已知曲线方程f(x,y)=0.分别求此曲线关于原 点,关于x轴,关于y轴,关于直线y=x,关于直线 y=-x,关于直线y=3对称的曲线方程。 四、参数法与点差法题型: 例4 经过抛物线y2=2p(x+2p)(p0)的顶点A作互相 垂直的两直线分别交抛物线于B、C两点,求线段BC 的中点M轨迹方程。 五、交轨法与几何法题型 例5 抛物线线 的顶点作互相垂直的 两弦OA、OB,求抛物线的顶点O在直线AB上的射 影M的轨迹。(考例5) 说明:用交轨法求交点的轨迹方程时 ,不一定非要求出交点坐标,只要能 消去参数,得到交点的两个坐标间的 关系即可。交轨法实际上是参数法中 的一种特殊情况。 六、点差法: 例6(2004年福建,22)如图图,P是抛物线线C: 上一点,直线线 过点P且与抛物线C交于另一点Q。 若直线 与过点P的切线垂直,求线段PQ中点M的 轨迹方程。(图见教材P129页例2)。 说明:本题主要考查了直线、抛物线的基础知识,以 及求轨迹方程的常用方法,本题的关键是利用导数求 切线的斜率以及灵活运用数学知识分析问题、解决问 题。 小结 一、求轨迹的一般方法: 1直接法,2定义法,3代入法,4参数法 ,5交轨法,6几何法,7.待定系数法, 8.点差 法。 二、注意事项: 1直接法是基本方法;定义法要充分联想定义、灵 活动用定义;化入法要设法找到关系式x=f(x,y), y=g(x,y);参数法要合理选取点参、角参、斜率参等 参数并学会消参;交轨法要选择参数建立两曲线方 程;几何法要挖掘几何属性、找到等量关系。 2要注意求得轨迹方程的完备性和纯粹性。在最后 的结果出来后,要注意挖去或补上一些点等。 课 前 热 身 y=0(x1) 1.动点P到定点(-1,0)的距离与到点(1,0)距离之差为2,则 P点的轨迹方程是_. 2.已知OP与OQ是关于y轴对称,且2OPOQ=1,则点P(x、 y)的轨迹方程是_ 3.与圆x2+y2-4x=0外切,且与y轴相切的动圆圆心的轨迹方 程是_. -2x2+y2=1 y2=8x(x0)或y=0(x0) 4.ABC的顶点为A(0,-2),C(0,2),三边长a、b、c成等 差数列,公差d0;则动点B的轨迹方程为_ _. 5.动点M(x,y)满足 则点M轨迹是( ) (A)圆 (B)双曲线 (C)椭圆 (D)抛物线 返回 D 6.当0,/2时,抛物线y=x2-4xsin -cos 2的顶 点的轨迹方程是_ 7.已知线段AB的两个端点A、B分别在x轴、y轴上滑 动,|AB|=3,点P是AB上一点,且|AP|=1,则点P的 轨迹方程是_ 8. 过原点的动椭圆的一个焦点为F(1,0),长轴长为 4,则动椭圆中心的轨迹方程为_ X2=-2y-2 返回 9.已知A+B+C=0,则直线Ax+By+C=0(A、B、CR)被抛 物线y2=2x所截线段中点M的轨迹方程是 ( ) (A)y2+y-x+1=0 (B)y2-y-x+1=0 (C)y2+y+x+1=0 (D)y2-y-x-1=0 B 能力能力思维思维方法方法 【解题回顾】求动点轨迹时应注意它的完备性与纯粹性化 简过程破坏了方程的同解性,要注意补上遗漏的点或者要 挖去多余的点.“轨迹”与“轨迹方程”是两个不同的概念,前 者要指出曲线的形状、位置、大小等特征,后者指方程( 包括范围) 1.设动直线l垂直于x轴,且与椭圆x2+2y2=4交于A、B两点 ,P是l 上满足PAPB=1的点,求点P的轨迹方程 【解题回顾解题回顾】本题的轨迹方程是利用直接法求得,注意本题的轨迹方程是利用直接法求得,注意x x的的 取值范围的求法取值范围的求法. .利用数量积的定义式的变形可求得相关的利用数量积的定义式的变形可求得相关的 角或三角函数值角或三角函数值. . 2. 2.已知两点,已知两点,MM(-1(-1,0)0),N N(1(1,0)0),且点,且点P P使使MPMP MNMN,PMPN PMPN , , NMNPNMNP成公差小于零的等差数列,成公差小于零的等差数列,(1)(1)求点求点P P的转迹方程的转迹方程.(2).(2)若若 点点P P坐标为坐标为( (x x 0 0, ,y y0 0 ) ),若,若 为为PMPM与与PNPN的夹角,求的夹角,求tantan . . 【解题分析】本例中动点M的几何特征并不是直接给定的 ,而是通过条件的运用从隐蔽的状态中被挖掘出来的 3.一圆被两直线x+2y=0,x-2y=0截得的弦长分别为8和4,求 动圆圆心的轨迹方程 【解题回顾解题回顾】此题中动点此题中动点 P P(x,y)(x,y)是随着动点是随着动点Q(xQ(x 1 1 ,y ,y1 1 ) ) 的运动而运动的,而的运动而运动的,而Q Q点点 在已知曲线在已知曲线C C上,因此只上,因此只 要将要将x x 1 1 ,y y 1 1 用用x x、y y表示后表示后 代入曲线代入曲线C C方程中,即可得方程中,即可得P P点的轨迹方程点的轨迹方程. .这种求这种求 轨迹的方法称为相关点法轨迹的方法称为相关点法( (又称代入法又称代入法). ). 4. 点Q为为双曲线线x2-4y2=16上任意一点,定点A(0,4) ,求内分AQ所成比为为12的点P的轨轨迹方程 5. M是抛物线y2=x上一动点,以OM为一边(O为原点) ,作正方形MNPO,求动点P的轨迹方程. 【解题回顾】再次体会相关 点求轨迹方程的实质,就是 用所求动点P的坐标表达式 (即含有x、y的表达式)表示 已知动点M的坐标(x0 , y0), 即得到x0=f(x,y),y0=g(x,y), 再将x0 , y0的表达式代入点M的方程F(x0 ,y0)=0中,即 得所求. 6.过椭圆x2/9+y2/4=1内一定点(1,0)作弦,求诸弦中点 的轨迹方程 【解题回顾】解一求出 后不必求y0,直接 利用点P(x0 , y0)在直线y=k(x-1)上消去k. 解二中把弦的 两端点坐标分别代入曲线方程后相减,则弦的斜率可 用中点坐标来表示,这种方法在解有关弦中点问题时 较为简便,但是要注意这样的弦的存在性 【解题回顾】本题由题设OMAB、 OAOB及作差法求直线AB的斜率, 来寻找各参数间关系,利用代换及整体性将参数消去 从而获得M点的轨迹方程. 7. 过抛物线y2=4x的顶点O作相互垂直的弦OA,OB, 求抛物线顶点O在AB上的射影M的轨迹方程. 返回 延伸延伸拓展拓展 【解题回顾】(1)本小题是由条件求出定值,由定值的取值情 况,由定义法求得轨迹方程. (2)本小题先设点的坐标,根据向量的关系,寻找各变量之间 的联系,从中分解主变量代入并利用辅助变量的范围求得 的范围 1.已知动点P与双曲线x2/2-y2/3=1的两个焦点F1、F2的距离 之和为定值,且cosF1PF2的最小值为-1/9. (1)求动点P的轨迹方程; (2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 圆的面积课件教学评价
- 2025年医院护理部主任竞聘面试经验与题目预测
- 2025年心理治疗师初级面试模拟试卷及参考答案
- 课与课件融合案例
- 2025年安全操作规范知识题库
- 2025年农机长助理笔试核心考点精解
- 2025年无人机航拍技术初级复习手册
- 2025年干部学院教师招聘笔试模拟练习题及答案
- 乌塔课文教学课件
- 2025年新疆安全生产培训考试强化训练
- 数据中心负荷计算方法
- 水箱拆除专项施工方案
- YY/T 1851-2022用于增材制造的医用纯钽粉末
- GB/T 20858-2007玻璃容器用重量法测定容量试验方法
- 纪委案件审理课件教材
- 生活中的会计课件
- 辽宁大学学生手册
- 湘美版美术一年级上册全册课件
- 酒水购销合同范本(3篇)
- 师说一等奖优秀课件师说优质课一等奖
- 学习罗阳青年队故事PPT在急难险重任务中携手拼搏奉献PPT课件(带内容)
评论
0/150
提交评论