




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:5.3.1简单的轴对称图形 1经历探索等腰三角形和等边三角形的性质过程,掌握等腰三角形的轴对称性、三线合一、两底角相等等性质.2学会运用等腰三角形的思想整体观察对象,总结一些有益的结论。拓宽学生视野,提高学生认识水平,培养学生利用信息,开展思考和表达能力.3使学生在认识、制作和欣赏轴对称图形的过程中,感受到物体或图形的对称美,激发对数学学习的积极情感.教学重点与难点:重点:等腰三角形、等边三角形的性质.难点:等腰三角形、等边三角形的性质及探索过程.课前准备:多媒体课件.教学过程:一、创设情境,导入新课活动内容:同学们,生活中不缺少美,缺少的是发现美的眼睛罗丹,生活中处处都有美,那就让我们一起擦亮自己的眼睛,去发现去欣赏吧!今天我们继续欣赏对称的美.我们一起回顾轴对称图形,轴对称的概念和它们的性质.观察下列各种图形,判断是不是轴对称图形, 能找出对称轴吗?(课件展示图片)三角形是轴对称图形吗?那么什么样的三角形是轴对称图形? 处理方式:学生思考,讨论,回顾轴对称的图形的定义,并根据定义完成题目. 学生大部分能够准确而全面的找出对称轴,并能说出部分图标的标志名称.设计意图:通过问题,希望学生能回忆起前两节所学内容,培养学生善于观察图形、乐于探索研究的学习品质及全面思考的能力. 以生活中的事例入题,大大提高了学生的学习兴趣,也由此加深了学生对数学来源于生活又作用于生活的道理.二、自主探究,展示交流活动内容:1. 认识等腰三角形.给出三种等腰三角形的形状,包括锐角、钝角、直角形状的图形.2. 介绍等腰三角形的概念及各部分名称.给出生活中含有等腰三角形的建筑物图片,生活中的实例随处可见,给学生们呈现最直观的现象.如艾菲尔铁塔、埃及金字塔等.处理方式:思考等腰三角形的定义.讨论交流等腰三角形的概念有两边相等的三角形是等腰三角形.理解等腰三角形的腰,底边,顶角,底角.学生在一个开放的环境下展示、接触生活中的等腰三角形,从中获取了信息,感受生活中的事例.而且讲解中图形生动形象,使概念的获取更加全面.设计意图:通过动手操作,得到等腰三角形的有关概念,更能直观地感知等腰三角形的对称性.为下面的“折”的实验作好准备。同时,也为学生提供了参与数学活动的时间和空间,调动了学生的积极主动性.达标练习: 比一比,看谁反应快1.请同学们判断下面哪些是等腰三角形?2.如右图,在ABC中,AB=AC,请问:哪些边是腰?哪些边是底边?哪个角是顶角?哪些角是底角?活动内容:等腰三角形是一种特殊的三角形,它除具有一般三角形的性质外,还有一些特殊的性质吗?拿出你的等腰三角形纸片,把纸片折折看,你能发现什么现象吗? 1等腰三角形是轴对称图形吗?请找出它的对称轴. 2等腰三角形的两个底角有什么关系? 3顶角的平分线所在的直线是等腰三角形的对称轴吗? 4底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢? 处理方式:同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系 1.我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等 2.我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线 3.我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴 3.底边上的高所在的直线也是等腰三角形的对称轴结论:等腰三角形是轴对称图形它的对称轴是顶角的平分线所在的直线因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线 (演示课件)讨论交流,发现现 象结论1折叠的两部分互相重合轴对称图形2B=C两个底角相等3 BD=CDAD为底边上的中线4BAD=CADAD为顶角平分线5ADB=ADC=900AD为底边上的高 所以我们得到等腰三角形的性质: 1等腰三角形的两个底角相等(简写成“等边对等角”)2等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”)3. 等腰三角形是轴对称图形设计意图:探索等腰三角形的轴对称性及其有关性质,教学时,可以让学生先动手折一折等腰三角形纸片,自己发现有哪些结论。然后小组成员一起通过操作验证自己的结论,并由此归纳现象,探索等腰三角形的有关特征,目的是培养学生的语言归纳能力随堂练习:请同学们根据自己的理解结合图形完成下面题目(课件展示题目)1如图2,在ABC中,AB=AC时,图2DCBA(1)因为ADBC,所以 _= _;_=_ (2)因为AD是中线,所以_; _=_(3)因为 AD是角平分线,所以_ _;_=_ (4)因为AB=AC,所以 _= _活动内容:探究等边三角形的特征 1.通过学习我们知道等腰三角形的轴对称性及其它特征,那么当等腰三角形的腰与底边相等时它是什么三角形?2.等边三角形有几条对称轴,又有哪些特征呢?处理方式:1.等边三角形是轴对称图形,它有三条对称轴 2.等边三角形各角相等,都等于60. 3.等边三角形每个角的平分线和这个角的对边上的中线、高线重合(“三线合一”),它们所在的直线都是等边三角形的对称轴设计意图:学生通过操作和思考分析等边三角性的轴对称性,并尽可能多的探索它的特征学生可能运用不同的办法解决这个问题,有的学生可能借助动手操作,有的学生可能通过等边三角形的特殊性由等腰三角形的性质推知它的特征3、 尝试应用,体现成功:活动内容:你有哪些方法可以得到一个等腰三角形?与同伴交流处理方式:1.定义:有两条边相等的三角形叫等腰三角形.2.性质:如果一个三角形有两个角相等,那么它们所对的边也相等3. 折纸:将长方形纸片对折,沿对角线折叠,再沿折痕展开设计意图:以动手操作的形式得出一个等腰三角形,鼓励学生充分的进行交流,充分利用等腰三角形的特征,逆向思维,达到学以致用的目的同时充分体现了数学来源于生活,同时也更好的服务于生活的理念四、学以致用,知识延伸活动内容:例1已知: 在ABC中,ABAC,B80求C和A的度数处理方式:解:ABAC, CB80( )又ABC180,A180808020变式:(1)已知:在ABC中,ABAC, A80求B和C的度数(2)已知:ABC是等腰三角形,其中一个角为80求另外两个角的度数设计意图:通过例题讲解,巩固理角等腰三角形“等边对等角”的性质;培养学生思维的开放性与灵活性随堂练习:1. 如图,在等腰ABC中,AB=AC顶角A=100那么底角B=_C =_ 2. 在ABC中,AB=AC,B=72,那么A=_3.如图,是由大小不等的等边三角形组成的图案,请找出它的对称轴.五、归纳小结,升华认知活动内容:本堂课你的收获是什么?处理方式:(学生畅所欲言)1.等腰三角形是轴对称图形,它的两个底角相等 2.等腰三角形的对称轴是它顶角的平分线所在的直线,并且它的顶角平分线既是底边上的中线,又是底边上的高.3.等腰三角形的性质提供了说明两角相等的常用方法;4.“三线合一”是说明两条线段相等、两个相等及两条直线互相垂直的依据(争先恐后的讨论着,补充着)设计意图:通过学生自主总结、畅谈收获,教师及时发现问题、适时补充,既让学生在知识和能力方面得到诸多发展,又让学生在情感态度和价值观方面体验到成功的愉悦六、达标检测,反馈矫正 A组:1等腰三角形若两边长为3和7,则其周长为_2如果等腰三角形的一个底角为50,那么其余两个角为_和_3如果等腰三角形的顶角为80,那么它的一个底角为_4等腰三角形的底角可以是直角或钝角吗?为什么?5.判断题:(1)等腰三角形的底角都是锐角( ) (2)钝角三角形不可能是等腰三角形( )(3)等腰三角形一角的平分线,一边上的中线,一边上的高都是它的对称轴( )(4)等腰三角形的两角相等( )(5)三角形的高线、角平分线、中线三线合一( )6.如图1:AB=AC, 1=2( ).7.等腰三角形的对称轴有( )条ABCD8.在等腰三角形ABC中,有一个角为50,那么另外两个角分别是多少?B组:9.如何在黑板上画出一条水平线?已知:AB=AC,D是BC边的中点设计意图:当堂检测可以检测学生当堂掌握的程度,为下步作业的设置和辅导学生提供反馈,使学生提高听课和学习的效率七、作业布置,课外拓展必做题:课本 第122页 习题5.3第1、2题选做题:课本 第123页 习题5.3 第5题实践活动:扇形是轴对称图形吗?设计一个方案验证自己的猜测.设计意图:作业分成两个层次,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年加盟办学合同协议大全
- 云南省怒江傈僳族自治州煤矿采煤机(掘进机)操作作业(初级)培训考核试卷(含答案)
- 2025年汽车购销合同经典版(2篇)
- 2025年水务系统领导就职演讲(3篇)
- 2025年进口零部件加工合作合同
- 共点力作用下物体平衡实验操作流程-教案
- 公路施工考试题及答案
- 2025年无争议离婚合同制定操作
- 2025建筑室内设计合作协议范本
- 本科中文专业毕业论文
- 混泥土计量管理办法
- 二级生物安全实验室备案材料
- 国防教育课件
- 环境监测站废物管理制度
- 完整版护士糖尿病护理课件
- 铜绿假单胞菌安全数据单
- 立足“大思政”当好引路人-如何当好班主任专题培训
- 退休干部管理暂行办法
- 部队安全驾驶课件
- 物资装备配置方案
- 2025年中级经济师考试全试题及答案清单
评论
0/150
提交评论