


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一次函数的概念课 题20.1 一次函数的概念设计依据(注:只在开始新章节教学课必填)教材章节分析:学生学情分析:课 型新授课教学目标1理解一次函数、常值函数的概念;2理解一次函数与正比例函数的关系;3. 会利用待定系数法求一次函数的解析式重 点一次函数与正比例函数概念的关系; 难 点用待定系数法求一次函数的解析式.教 学准 备正比例函数与反正比例函数学生活动形式交流,操作,讨论教学过程设计意图课题引入: 一、创设情境,复习导入 问题1:汽车油箱里原有汽油120升,已知每行驶10千米耗油2升,如果汽车油箱的剩余是y(升)汽车行驶的路程为x(千米),试用解析式表示y与x的关系 分析:每行驶10千米耗油2升,那么每行驶1千米耗油0.2升,因此y与x的函数关系式为: y=1200.2x (0x600) 当然,这个函数也可表示为:y=0.2x+120 (0x600)说明 当一个函数以解析式表示时,如果对函数的定义域未加说明,那么定义域由这个函数的解析式确定;否则,应指明函数的定义域. 这个函数是不是我们所学的正比例函数?它与正比例函数有何不同?它的图像又具备什么特征?从今天开始我们将讨论这些问题一次函数的概念.学生独立完成.有的放矢的讲评完成后教师再让学生写出定义域,说明为什么0x10教师强调都是关于自变量的一次整式揭示正比例函数与一次函数的关系.提示学生题中y关于x的函数式是否已写成y=kx+b的一般形式了揭示常值函数.让学生思考.方法一观察法;方法二先把它写成一般形式,然后根据定义解答.用待定系数法设出所求的解析式为y=kx+b.知识呈现: 1概念辨析问题2:某人驾车从甲地出发前往乙地,汽车行驶到离甲地80千米的A处发生故障,修好后以60千米小时的速度继续行驶.以汽车从A处驶出的时刻开始计时,设行驶的时间为t(小时),某人离开甲地所走的路程为s(千米),那么s与t的函数解析式是什么?类似问题1:这个函数解析式是S=60t+80 思考:这个解析式和y=-0.2x+120有什么共同特点?说明 通过讨论使学生能够从它们的函数表达式得出表示函数的式子都是自变量的一次整式. 如果我们用k表示自变量的系数,b表示常数这些函数就可以写成:y=kx+b(k0)的形式.一般地,形如y=kx+b(k、b是常数,且k0)的函数,叫做一次函数(linear function)一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k0)所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数(constant function)它的定义域由所讨论的问题确定2例题分析例题1 根据变量x、y的关系式, 判断y是否是x的一次函数. (1);(2);(3);(4).例题2 已知变量x、y之间的关系式是y=(a+1)x+a (其中a是常数),那么y是x的一次函数吗?例题3 已知一个一次函数,当自变量x=2时,函数值y=-1;当x=5时,y=8.求这个函数的解析式.分析:求一次函数解析式,关键是求出k、b值由此可列出关于k、b的二元一次方程组,解之可得. 解设所求一次函数的解析式为y=kx+b;由x=2时y=-1,得 -1=2k+b;由x=5时y=8,得 8=5k+b.解二元一次方程组k=3, b=-7.所以,这个一次函数的解析式是.说明 这里求一次函数解析式的方法是待定系数法.解析式中k,b是待定系数,利用两个已知条件列出关于k、b的方程组再求解,可确定它们的值.3巩固练习: 1下列函数中哪些是一次函数,哪些又是正比例函数? (1) (2) (3) (3) 2一个小球从斜坡由静止开始向下滚动,其速度每秒增加2米这个小球的速度v随时间t变化的函数关系是一次函数吗?3汽车油箱中原有油50升,如果行驶中每小时用油5升,求油箱中的油量y(升)随行驶时间x(小时)变化的函数关系式,并写出自变量x的取值范围y是x的一次函数吗?4已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式课堂小结: 一般地,形如y=kx+b(k、b是常数,且k0)的函数,叫做一次函数一次函数的定义域是一切实数.当b=0时,y=kx+b即y=kx(k是常数,且k0)所以说正比例函数是一种特殊的一次函数.当k=0时,y等于一个常数,这个常数用c来表示,一般地,我们把函数y=c(c是常数)叫做常值函数它的定义域由所讨论的问题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小儿胃食管反流课件
- 小儿肾积水护理课件
- 小儿病课件教学课件
- 摩托车公户协议的合同范本
- 买卖房协议合同补充协议
- 小儿推拿腹泻手法课件
- 代物清偿协议借款协议书
- ECFA协议离婚协议书
- 买方延迟收货免责协议书
- 网签合同协议范本模板模板
- DB13T 5545-2022 选矿厂安全生产基本条件
- 2025红色中国风《长安的荔枝》读书分享模板
- 智慧停车系统开发与运营合作
- T/SHPTA 102-2024聚四氟乙烯内衬储罐技术要求
- T/CAQP 001-2017汽车零部件质量追溯体系规范
- 彩票店管理制度
- 西安经开第一学校语文新初一分班试卷
- 加油站股制合同标准文本
- DB33-T 1354.2-2024 产业数据仓 第2部分:数据资源编目规范
- 劳务外包服务投标方案(技术标)
- CNAS-CL36-2012 医学实验室质量和能力认可准则在基因扩增检验领域的应用说明
评论
0/150
提交评论