《正弦定理》教学设计.doc_第1页
《正弦定理》教学设计.doc_第2页
《正弦定理》教学设计.doc_第3页
《正弦定理》教学设计.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

正弦定理教学设计安远二中刘达生一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证明,最后进行简单的应用。二、教材分析:1、教材地位与作用:本节内容安排在普通高中课程标准实验教科书数学必修5(A版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证明,感受“类比猜想证明”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。2、教学重点和难点:重点是正弦定理的发现和证明;难点是三角形外接圆法证明。三、教学目标:1、知识目标:掌握正弦定理,理解证明过程。2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。(2)增强学生的协作能力和数学交流能力。(3)发展学生的创新意识和创新能力。3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的兴趣。(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的深入探讨。让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。设计思路如下:创设情境布疑激趣 观察实验建立模型 探寻特例提出猜想深入思考证明猜想简单应用总结评估 五、教学过程:(一)创设问题情景观察下列特殊三角形:设计一个学生比较感兴趣的实际问题,吸引学生注意力,使其立刻进入到研究者的角色中来! (二)引导学生用“特例到一般”的研究方法,猜想数学规律。提出问题:1、如何对以上等式进行检验呢?激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,筛选出能成立的等式()。2、那这一结论对任意三角形都适用吗?指导学生用刻度尺、圆规、计算器等工具对一般三角形进行验证。3、让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系“特例类比猜想”是一种常用的科学的研究思路! (三)让学生进行各种尝试,探寻理论证明的方法。提出问题:1、如何把猜想变成定理呢?使学生注意到猜想和定理的区别,强化学生思维的严密性。2、怎样进行理论证明呢?培养学生的转化思想,通过作高转化为熟悉的直角三角形进行证明。3、你能找出它们的比值吗?借以检验学生是否掌握了以上的研究思路。用几何画板动画演示,找到比值,突破难点。4、将猜想变为定理,并用以解决课首提出的问题,并进行适当的思想教育。 学生成为发现者,成为创造者!让学生享受成功的喜悦!(四)反思总结,布置作业1、正弦定理具有对称和谐美2、“类比实验猜想证明”是一种常用的研究问题的思路和方法课下思考:三角形中还有其它的边角定量关系吗?五、板书设计: 正弦定理1、 问题:大边对大角边角准确的量化关系?2、 研究思路:特例类比实验猜想证明3、 结论:在ABC中,边与所对角满足关系:七、课后反思本节课授课对象为二中高一的学生,学习基础较差。同时,考虑到这是一节探究课,授课前未告诉学生授课内容。学生在未经预习不知正弦定理内容和证明方法的前提下,在教师预设的思路中,一步步发现了定理并证明了定理,感受到了创造的快乐,激发了学习数学的兴趣。(一)、通过创设教学情境,激活了学生思维。从认知的角度看,情境可视为一种信息载体,一种知识产生的背景。本节课数学情境的创设突出了以下两点:1从有利于学生主动探索设计数学情境。新课标指出:学生的数学学习内容应当是现实的、有趣的和富有挑战性的。从心理学的角度看,青少年有一种好奇的心态、探究的心理。因此,本教案紧紧地抓住高二学生的这一特征,利用“正弦定理的发现和证明”这一富有挑战性和探索性的材料,精心设计教学情境,使学生在观察、实验、猜想、验证、推理等活动中,逐步形成创新意识。2.以问题为导向设计教学情境。“问题是数学的心脏”,本节课数学情境的设计处处以问题为导向: “对任意三角形都成立吗?”促使学生去思考问题,去发现问题。(二)、创造性地使用了教材。数学教学的核心是学生的“再创造”,新课标提倡教师创造性地使用教材。本节课从问题情境的创造到数学实验的操作,再到证明方法的发现,都对教材作了一定的调整和拓展,使其更符合学生的思维习惯和认知水平,使学生在知识的形成过程、发展过程中展开思维,发展了学生的能力。(三)数学实验走进了课堂,这一朴实无华而又意义重大的科学研究的思路和方法给了学生成功的快乐;这一思维模式的养成也为学生的终身发展提供了有利的武器。一些遗憾:由于这种探究课型在平时的教学中还不够深入,有些学生往往以一种观赏者的身份参与其中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论