已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Math 126Winter 2016 Your NameYour Signature Student ID #Quiz Section Professors NameTAs Name CHECK that your exam contains 8 problems. This exam is closed book.You may use one 81 2 11 sheet of hand-written notes and a TI-30X IIS calculator. Do not share notes or calculators. Unless otherwise specifi ed, you should give your answers in exact form. (For example, 4 and 2 are in exact form and are preferable to their decimal approximations.) In order to receive full credit, you must show all of your work. Place a box around YOUR FINAL ANSWER to each question. If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER. Raise your hand if you have a question. ProblemTotal PointsScore 112 212 312 414 ProblemTotal PointsScore 512 612 712 814 Total100 Math 126, Winter 2016Page 1 of 8 1. (12 points) In BOTH parts, consider the three points A(1,1,2), B(3,1,5), and C(1,2,4). (a) Find, to the nearest degree, the angle ABC. (That is, fi nd the angle at the corner B). (b) Let P be the plane that passes through A, B, and C. Let L be the line that passes through (1,0,2) and (6,5,7). Find the (x,y,z) point of intersection of the line L and the plane P. Math 126, Winter 2016Page 2 of 8 2. (12 points) NOTE: The two parts below are NOT related! (a) Find all values of t at which the tangent line to the curve x = 6 t3, y = 2t 5t2is parallel to the vector h3,8i. (b) A small bug is moving according to the vector function r(t) = htsin(t),ln(t),t24e22ti. At time t = 1, the bug leaves the curve and follows the path of the tangent line. Find the (x,y,z) coordinates where the bugs tangent line path would intersect the xy-plane. Math 126, Winter 2016Page 3 of 8 3. (12 points) Consider the polar curve given by the polar function r = 2 + sin(). Let P be the point of intersection of the polar curve with the line y = 3 3 x in the fi rst quadrant. (a) Find an equation of the tangent line to the curve at P. (b) Find the area of the region bounded by the polar curve, the line y = 3 3 x and the x-axis in the fi rst quadrant. Math 126, Winter 2016Page 4 of 8 4. (14 points) NOTE: The parts below are NOT related! (a) Compute the partial derivatives with respect to x and y of the function f(x,y) = xy. (b) Calculate the tangent plane to the surface defi ned by the equation xy sin(z) + x y + z = 0 at the point (x,y,z) = (2,2,0). (c) Find an example of a diff erentiable function f(x,y) whose best linear approximation near (0,0) is given by the function L(x,y) = 0 and which has neither a local maximum nor a local minimum at (0,0). Math 126, Winter 2016Page 5 of 8 5. (12 points) NOTE: The parts below are NOT related! (a) Find the volume of the solid above the cone z = px2 + y2and below the sphere x2+ y2+ z2= 18. (b) Evaluate the integral Z 1 0 Z 1 x p 1 + y2dy dx. Math 126, Winter 2016Page 6 of 8 6. (12 points) The acceleration vector of a spaceship is a (t) = h2cos(t) 3sin(t),cos(t) + 6sin(t), 40cos(t)i for all t 0 and the specifi ed initial velocity and position are v (0) = h3,6,0i r (0) = h2,1,0i. (a) Find the position function r (t) of the spaceship. (b) Find the normal component of the acceleration at time t. (Hint: The answer is a constant, simplify until you fi nd this constant.) Math 126, Winter 2016Page 7 of 8 7. (12 points) Consider the function f(x) = ln(1 + 3x) + xe2x 4x 1 + 5x. (a) Find the Taylor series for f(x) based at b = 0. Write your answer using sigma notation. (b) Find the open interval on which the series in (a) converges. (c) Find the third Taylor polynomial of F(x) based at b = 0 where F(x) = Z x 0 f(t) dt. Math 126, Winter 2016Page 8 of 8 8. (14 points) Consider the function f(x) = sin(x) + cos(x) + 1 2 x. (a) Find the second Taylor polynomial T2(x) for f(x) based at b = 1. (b) Find an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黔南民族师范学院《生态会展》2024-2025学年第一学期期末试卷
- 山东省济南市平阴县第一中学2025年高一上物理期末质量检测试题含解析
- 进口合同范本
- 土的液塑限联合测定试验记录
- 2025年秋冀教版(新教材)小学信息科技四年级第一学期期末模拟试题及答案(共3套)
- 2024年度经营目标责任书
- 大学生毕业论文范文供应链管理中的物流成本控制
- 文献检索与利用课件-第1部分
- 初一政治小论文格式
- 仓库管理开题报告
- 基于PLC的四层电梯控制毕业论文
- 老年人皮内注射注意事项
- 规模羊场粪污处理与利用技术规程
- 2022年杭州市建德市公安局集中招聘警务辅助人员考试真题
- 《疫苗管理法》法律法规解读课件
- 体育与健康课程水平三短跑单元教案 站立式起跑以及起跑后的加速跑
- 铸件缺陷与铸件质量检测培训课件
- 《普通话》教学讲义课件
- 细胞生物学与医学遗传学考试试题及答案
- 质量审核员专业代码
- GIS应用开发ppt课件(完整版)
评论
0/150
提交评论