




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Math 126Winter 2016 Your NameYour Signature Student ID #Quiz Section Professors NameTAs Name CHECK that your exam contains 8 problems. This exam is closed book.You may use one 81 2 11 sheet of hand-written notes and a TI-30X IIS calculator. Do not share notes or calculators. Unless otherwise specifi ed, you should give your answers in exact form. (For example, 4 and 2 are in exact form and are preferable to their decimal approximations.) In order to receive full credit, you must show all of your work. Place a box around YOUR FINAL ANSWER to each question. If you need more room, use the backs of the pages and indicate to the reader that you have done so. DO NOT USE SCRATCH PAPER. Raise your hand if you have a question. ProblemTotal PointsScore 112 212 312 414 ProblemTotal PointsScore 512 612 712 814 Total100 Math 126, Winter 2016Page 1 of 8 1. (12 points) In BOTH parts, consider the three points A(1,1,2), B(3,1,5), and C(1,2,4). (a) Find, to the nearest degree, the angle ABC. (That is, fi nd the angle at the corner B). (b) Let P be the plane that passes through A, B, and C. Let L be the line that passes through (1,0,2) and (6,5,7). Find the (x,y,z) point of intersection of the line L and the plane P. Math 126, Winter 2016Page 2 of 8 2. (12 points) NOTE: The two parts below are NOT related! (a) Find all values of t at which the tangent line to the curve x = 6 t3, y = 2t 5t2is parallel to the vector h3,8i. (b) A small bug is moving according to the vector function r(t) = htsin(t),ln(t),t24e22ti. At time t = 1, the bug leaves the curve and follows the path of the tangent line. Find the (x,y,z) coordinates where the bugs tangent line path would intersect the xy-plane. Math 126, Winter 2016Page 3 of 8 3. (12 points) Consider the polar curve given by the polar function r = 2 + sin(). Let P be the point of intersection of the polar curve with the line y = 3 3 x in the fi rst quadrant. (a) Find an equation of the tangent line to the curve at P. (b) Find the area of the region bounded by the polar curve, the line y = 3 3 x and the x-axis in the fi rst quadrant. Math 126, Winter 2016Page 4 of 8 4. (14 points) NOTE: The parts below are NOT related! (a) Compute the partial derivatives with respect to x and y of the function f(x,y) = xy. (b) Calculate the tangent plane to the surface defi ned by the equation xy sin(z) + x y + z = 0 at the point (x,y,z) = (2,2,0). (c) Find an example of a diff erentiable function f(x,y) whose best linear approximation near (0,0) is given by the function L(x,y) = 0 and which has neither a local maximum nor a local minimum at (0,0). Math 126, Winter 2016Page 5 of 8 5. (12 points) NOTE: The parts below are NOT related! (a) Find the volume of the solid above the cone z = px2 + y2and below the sphere x2+ y2+ z2= 18. (b) Evaluate the integral Z 1 0 Z 1 x p 1 + y2dy dx. Math 126, Winter 2016Page 6 of 8 6. (12 points) The acceleration vector of a spaceship is a (t) = h2cos(t) 3sin(t),cos(t) + 6sin(t), 40cos(t)i for all t 0 and the specifi ed initial velocity and position are v (0) = h3,6,0i r (0) = h2,1,0i. (a) Find the position function r (t) of the spaceship. (b) Find the normal component of the acceleration at time t. (Hint: The answer is a constant, simplify until you fi nd this constant.) Math 126, Winter 2016Page 7 of 8 7. (12 points) Consider the function f(x) = ln(1 + 3x) + xe2x 4x 1 + 5x. (a) Find the Taylor series for f(x) based at b = 0. Write your answer using sigma notation. (b) Find the open interval on which the series in (a) converges. (c) Find the third Taylor polynomial of F(x) based at b = 0 where F(x) = Z x 0 f(t) dt. Math 126, Winter 2016Page 8 of 8 8. (14 points) Consider the function f(x) = sin(x) + cos(x) + 1 2 x. (a) Find the second Taylor polynomial T2(x) for f(x) based at b = 1. (b) Find an
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物支架设计优化-洞察及研究
- 环保铸造工艺创新-洞察及研究
- 数字雕塑美学研究-洞察及研究
- 车联网供应链安全-洞察及研究
- 肺功能改善方法-洞察及研究
- 土方开挖劳务队合同范本
- 大宗铜废料采购合同范本
- 塑料挤出件采购合同范本
- 废旧木托盘销售合同范本
- 小区维修消防门合同范本
- 道教与医学的学习资料
- 大厦消防工程技术标
- 水中总氯的测定方法确认实验报告(HJ586)
- MT 282-1994煤矿用移动式甲烷断电仪通用技术条件
- 第二章-基因工程的载体和工具酶课件
- 政府采购评审专家考试题库(含答案)
- 新教材人教A版高中数学选择性必修第一册全册教学课件
- 75号公告专利收费项目和标准(官费)
- 高中生物第一课-(共24张)课件
- 电气原理图基础知识课件
- 新教师跟岗学习实施方案
评论
0/150
提交评论