人教A版必修三 两个变量的线性相关教案.doc_第1页
人教A版必修三 两个变量的线性相关教案.doc_第2页
人教A版必修三 两个变量的线性相关教案.doc_第3页
人教A版必修三 两个变量的线性相关教案.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(铜鼓中学数学组)2课时 课题:2.3.1变量间的相互关系(三) 第 个教案课型: 新授课 年 月 日教学目标知识与技能:能用数学符号刻画出“从整体上看,各点与此直线的点的偏差”的表达方式;过程与方法:通过减少样本点个数,经历对表达式的展开,把“偏差最小”简化为“二次多项式”最小值问题,通过合情推理,使学生接受最小二乘法的科学性,在此过程中了解最小二乘法思想;情感、态度与价值观: 在经历用不同估算方法描述两个变量线性相关的过程后,在学生现有知识能力范围内,如何选择一个最优方法,成为知识发展的逻辑必然教学重点能结合具体案例,经历数据处理步骤,根据回归方程系数公式建立回归方程教学难点通过改变同一问题下样本点的选择进而对照回归方程的差异,体会随机思想教学方法通过大量的回归直线比较分析,体会回归思想和随机思想,因此需要多媒体电脑展示设备支持。教学过程:批 注活动一:创设情景,揭示课题 (5分钟)问题1:(投影上节课探究结果)如何评价这些“直线”的优劣?理由呢?问题2:能否从几何直观角度用文字语言叙述你的理由?问题3:“从整体上看,各点与此直线的距离最小”中,距离等于偏差吗?作为判断优劣的标准,可以等同吗?活动二:步入新知,师生交流(20分钟) 回归直线 思考1:一组样本数据的平均数是样本数据的中心,那么散点图中样本点的中心如何确定?它一定是散点图中的点吗? 思考2:在各种各样的散点图中,有些散点图中的点是杂乱分布的,有些散点图中的点的分布有一定的规律性,年龄和人体脂肪含量的样本数据的散点图中的点的分布有什么特点?这些点大致分布在一条直线附近.(如上右图)思考3:对一组具有线性相关关系的样本数据,你认为其回归直线是一条还是几条?思考4:在样本数据的散点图中,能否用直尺准确画出回归直线?借助计算机怎样画出回归直线?活动三:合作学习,探究新知学(18分钟):回归方程 在直角坐标系中,任何一条直线都有相应的方程,回归直线的方程称为回归方程.对一组具有线性相关关系的样本数据,如果能够求出它的回归方程,那么我们就可以比较具体、清楚地了解两个相关变量的内在联系,并根据回归方程对总体进行估计. 思考1:回归直线与散点图中各点的位置应具有怎样的关系? 整体上最接近 思考2:对于求回归直线方程,你有哪些想法?思考3:对一组具有线性相关关系的样本数据:(x1,y1),(x2,y2),(xn,yn),设其回归方程为可以用哪些数量关系来刻画各样本点与回归直线的接近程度? 思考4:为了从整体上反映n个样本数据与回归直线的接近程度,你认为选用哪个数量关系来刻画比较合适? 思考5:根据有关数学原理分析,当 时,总体偏差 为最小,这样就得到了回归方程,这种求回归方程的方法叫做最小二乘法.回归方程中,a,b的几何意义分别是什么?思考6:利用计算器或计算机可求得年龄和人体脂肪含量的样本数据的回归方程为 ,由此我们可以根据一个人个年龄预测其体内脂肪含量的百分比的回归值.若某人37岁,则其体内脂肪含量的百分比约为多少?20.9%练习 3.F表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗Y(吨标准煤)的几组对照数据x 3 4 5 6 y 2.5 3 4 4.5 (1)请画出上表数据的散点图; (2)请根据上表提供的数据,崩最小二乘法求出Y关于x的线性回归方程Y=bx+a; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤试根据(2)求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:325+43+54+645=66.5) 解:(1)如图(2)由对照数据,计算得: ; 所求的回归方程为 (3) , 吨, 预测生产100吨甲产品的生产能耗比技改前降低(吨)活动四:归纳整理,提高认识(2分钟)1. 求样本数据的线性回归方程,可按下列步骤进行:第一步,计算平均数 第二步,求和 第三步,计算第四步,写出回归方程 2. 回归方程被样本数据惟一确定,各样本点大致分布在回归直线附近.对同一个总体,不同的样本数据对应不同的回归直线,所以回归直线也具有随机性. 3. 对于任意一组样本数据,利用上述公式都可以求得“回归方程”,如果这组数据不具有

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论