客户关系管理与数据挖掘.ppt_第1页
客户关系管理与数据挖掘.ppt_第2页
客户关系管理与数据挖掘.ppt_第3页
客户关系管理与数据挖掘.ppt_第4页
客户关系管理与数据挖掘.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Company Logo 客户关系管理与数据挖掘 参考文献 v 【1】客户关系管理与数据挖掘万方数据2008-8- 18 边岗亮 范景军 v 【2】如何找到启动CRM项目的金钥匙中国计算机 报 2004-02-18 熊勇、鲁向阳、吴超、李琼 v 【3】回顾CRM历史大中华客户关系管理组织 (www.GreaterChinaCRM.org) 2002-09-12 Mei Lin Fung v 【4】数据挖掘在CRM中的应用分析中华硕博网 (www.CHINA-B.com) 2009-04-21 v 【5】遗传算法百度百科 /view/45853.htm 2009-05-13 内容 背景 一、客户关系管理 二、数据挖掘是CRM成功的保障 三、数据挖掘技术 四、结论 背景知识 v联机事务处理OLTP (On-line transaction processing):也称为面向交易的处理系统, 其基本特征是顾客的原始数据可以立即传送到 计算中心进行处理,并在很短的时间内给出处 理结果。这样做的最大优点是可以即时地处理 输入的数据,及时地回答。也称为实时系统 (Real time System)。OLTP是传统的关 系型数据库的主要应用,主要是基本的、日常 的事务处理,例如银行交易。 背景知识 v OLTP在企业的应用日渐成熟,能顺利地完成事务型业 务,如自动开机(电信运营商)、即时交易(金融企业 )、实时收银入账(零售商场)。 v 但随着金融、电信等高端服务业的市场逐渐完善, OLTP系统的不足和局限也越来越为人所诟病,这是因 为OLTP是处理事务的系统,可是面对诸如什么客户的 利润率最高、哪些客户摇摆不定有离开的想法、哪些客 户有继续购买的需求、客户喜欢什么等等问题时,就开 始显得苍白无力了。因为手头现有的大量报表、报告, 虽然它们详尽地说明了过去甚至今天正在发生的事件, 却不能回答明天将要发生的事情。 背景知识 vCRM是为了帮助发现以往没有发现的“问题”, 发现隐藏在数据海洋里的“规律”和“趋势”。 CRM的重要功能是预测未来。它的独特之处是 ,能充分利用企业历史上的数据,来预测企业 的未来,使企业能领先一步,识别风险和机会 ,超前采取应对策略。 一、客户关系管理 客户关系管理的定义 1 客户关系管理的研究和应用现状 2 一、客户关系管理 客户关系管理的定义 1 客户关系管理的研究和应用现状 2 v 客户关系管理(Customer Relationship Management,CRM)首先是一种管理理念。其核 心思想是将企业的客户作为重要的资源,通过完善的客 户服务和深入的客户分析来满足客户的需求,保证实现 客户的终生价值。 v CRM又是一种旨在改善企业与客户之间关系的新型管 理机制,它实现于企业的市场营销、销售、服务与技术 支持等与客户相关的领域。 v CRM也是一种管理软件和技术。现在市场中CRM供应 商较多。国际的有Siebel、Oracol、Borland、 sybase;国内的用友、中圣、金蝶创智等。 一、客户关系管理 客户关系管理的定义 1 客户关系管理的研究和应用现状 2 vCRM起源于20世纪80年代初提出的接触管理 (Contact Management),即专门收集 整理客户与公司联系的所有信息。 v到20世纪90年代初期则演变成为包括服务中 心与支持资料分析的客户服务(Customer Care)。 v经历了20余年不断演变发展,CRM逐渐形成 了一整套管理理论体系和应用技术体系。 一、客户关系管理 客户关系管理的研究和应用现状 2 vCRM的概念发展到今天主要经历了3个阶段: 1、成功应用于销售和市场的客户关系数据应用 软件。(1990年) 2、客户关系营销Pepper和Rogers的1 对1市场营销理论。(90年代中期) 3通过数据库营销应用客户终身价值分析。( 90年代后期) 一、客户关系管理 客户关系管理的研究和应用现状 2 v从全球的范围看,2002年市场对CRM的需求 已经比ERP(企业资源计划)高,CRM销售量 每年的增长率超过了30%,而ERP只有10% 。 vCRM应用最广泛的领域是与科技和计算机相关 的领域,这一领域中的企业由于信息化程度高 和自身的优势,能够通过CRM系统建立起与客 户之间的有效价值链,从而创造更大的效益。 一、客户关系管理 客户关系管理的研究和应用现状 2 在国内,多数企业将大部分力气投入到企业内部 信息系统的建设上,这意味着CRM在我国的应 用还不成熟。 在我国生产总值中占据重要地位的传统企业在 CRM的市场中所占比例较小。加入WTO后企业 面临着更为严峻的国际竞争,因此企业迫切需要 寻找类似CRM的新思路、新理念来增强企业的 竞争力。 二、数据挖掘是CRM成功的保障 数据挖掘使市场信息触手可及 1 数据挖掘将数据加工成信息和知识 2 二、数据挖掘是CRM成功的保障 数据挖掘使市场信息触手可及 1 数据挖掘将数据加工成信息和知识 2 v数据库及数据挖掘技术(Data Mining,DM )可以扩展企业核心业务过程的信息后勤基础 ,通过数据挖掘来保证对数据的访问及分析, 从而提高业务过程的有效性。 v数据挖掘技术基于事实,利用数据仓库中产品 、价格、投资、分配等方面,从浩瀚的信息海 洋中提炼出有价值的信息,发现隐含在这些信 息中的对等的、不明显的、不可预知的模式、 趋势和关系,为企业提供决策的依据。 二、数据挖掘是CRM成功的保障 数据挖掘使市场信息触手可及 1 数据挖掘将数据加工成信息和知识 2 v在CRM中,数据仓库将海量复杂的客户行为数 据集中起来建立一个整合的、结构化的数据模 型,在此基础上对数据进行标准化、抽象化、 规范化分类、分析,为企业管理层提供及时的 决策信息,为企业业务部门提供有效的反馈数 据。 v数据挖掘技术的作用在企业管理客户生命周期 的各个阶段都会有所体现。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 v 数据挖掘的主要方法包括关联分析、时序模式、分类、 聚类、偏差分析以及猜测等,它们可以应用到以客户为 中心的企业决策分析及治理的不同领域和阶段: 1.关联分析。其目的就是挖掘出隐藏在数据间的相互关 系。例如,80%顾客同时会在购买某种A产品的同时 购买B产品,这就是一条关联规则。 2.时序模式。通过时间序列搜索出重复发生概率较高的 模式,这里强调时间序列的影响。例如,某段时间内, 购买了A产品的人中,70%的人会买B产品。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 3.分类。找出一个类别的概念描述,它代表了这类数据的整 体信息。分类是数据挖掘中应用最多的任务。要为每个类别 做出准确的描述或建立分析模型或挖掘出分类规则,然后用 这个分类规则对其他数据库中的记录进行分类。 4.聚类。按一定规则将数据分为一系列有意义的子集。通俗 地讲,就是多元统计中研究所谓“物以类聚” 现象的一种方 法,其职能是对一批样本或指标按它们在性质上的亲疏程度 来进行分类,采用不同的聚类方法,对于相同的记录集合可 能有不同的划分结果。 5.偏差分析。从数据库中找出异常数据。 6.猜测。利用历史数据找出规律,建立模型,并用此模型猜 测未来数据的种类、特征等。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 v CRM中数据挖掘的工作流程 : 1.数据抽样。当进行数据挖掘时,首先要从企业大量客 户信息数据中抽取出相关的数据子集。通过对数据样本 的精选,不仅能减少数据处理量,节省系统资源,而且 能通过对数据的筛选,使数据更加具有规律性。 2.数据探索。数据探索就是通常所进行的对数据深入调 查的过程,从样本数据集中找出规律和趋势,用聚类分 析区分类别,最终要达到的目的就是搞清楚多因素相互 影响的、十分复杂的关系,发现因素之间的相关性。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 3.数据调整。通过上述两个步骤的操作,对数据的状态 和趋势有了进一步的了解,这时要尽可能对问题解决的 要求进一步明确化、进一步量化。 4.模型化。在问题进一步明确,数据结构和内容进一步 调整的基础上,就可以建立模型。这一步是数据挖掘的 核心环节,运用神经网络、决策树、数理统计、时间序 列分析等方法来建立模型。 5.评价。从上述过程中将会得出一系列的分析结果、模 式和模型,多数情况会得出对目标问题多侧面的描述, 这时就要综合它们的规律性,提供合理的决策支持信息 。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 v CRM中数据挖掘的应用: 1.客户的获取。把客户根据其性别、收入、交易行为特 征等属性细分为具有不同需求和交易习惯的群体,同一 群体中的客户对产品的需求以及交易心理等方面具有相 似性,而不同群体间差异较大。这样就有助于企业在营 销中更加贴近顾客需求。分类和聚类等挖掘方法可以把 大量的客户分成不同的类,适合于进行客户细分。通过 群体细分,CRM用户可以更好地理解客户,发现群体 客户的行为规律。在行为分组完成后,还要进行客户理 解、客户行为规律发现和客户组之间的交叉分析。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 2.重点客户发现。就是找出对企业具有重要意义的客户 ,重点客户发现主要包括:发现有价值的潜在客户;发 现有更多的消费需求的同一客户;发现更多使用的同一 种产品或服务;保持客户的忠诚度。根据80/20以及 开发新客户的费用是保留老客户费用的5倍等营销原则 ,重点客户发现在CRM中具有举足轻重的作用。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 3.交叉营销。商家与其客户之间的商业关系是一种持续 的不断发展的关系,通过不断地相互接触和交流,客户 得到了更好更贴切的服务质量,商家则因为增加了销售 量而获利。交叉营销指向已购买商品的客户推荐其他产 品和服务。这种策略成功的关键是要确保推销的产品是 用户所感爱好的,有几种挖掘方法都可以应用于此问题 ,关联规则分析能够发现顾客倾向于关联购买哪些商品 ;聚类分析能够发现对特定产品感爱好的用户群;神经 网络、回归等方法能够猜测顾客购买该新产品的可能性 。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 4.客户分析。主要包括:客户价值金字塔分析、客户分 布分析、新增客户分析、流失客户分析和购买行为分析 。其中分类等技术能够判定具备哪些特性的客户群体最 轻易流失,建立客户流失猜测模型,从而帮助企业对有 流失风险的顾客提前采取相应营销措施。利用数据挖掘 技术,可以通过挖掘大量的客户信息来构建猜测模型, 较准确地找出易流失客户群,并制订相应的方案,最大 程度地保持住老客户。 二、数据挖掘是CRM成功的保障 数据挖掘将数据加工成信息和知识 2 5.性能评估。以客户所提供的市场反馈为基础,通过数 据仓库的数据清洁与集中过程,将客户对市场的反馈自 动地输入到数据仓库中,从而进行客户行为跟踪。 v 性能分析与客户行为分析和重点客户发现是相互交叠的 过程,这样才能保证企业的客户关系治理能够达到既定 的目标,建立良好的客户关系。 三、数据挖掘技术 数据挖掘技术 决策树法、遗传算法、集合 论方法、神经网络方法、聚 类方法、粗集方法、模糊集 合方法、Bayesian Belief Netords、最邻近算法、关 联规则挖掘算法、可视化技 术等 三、数据挖掘技术 ID3决策树法 主要思想: ID3方法检验所有的特征,选择 互信息最大的特征点A为产生决 策树节点,由该特征的不同取值 建立分支,对各分支的实例子集 递归,用该方法建立决策树节点 和分支,直到某一子集中的例子 属于同一类。 三、数据挖掘技术 ID3决策树法 主算法 1、从训练集中随机选择一个既 含正例又含反例的子集(称为 窗口); 2、用建树算法使当前窗口形成 一裸决策树; 3、对训练集(窗口除外)中例 子用所得决策树进行类别判定 ,找出错判的例子; 4、若存在错判的例子,把它们 插入窗口,转B,否则结束。 建树算法 1、对当前例子集合计算各特征 的互信息; 2、选择互信息最大的特征A(i ); 3、把在A(i)处取值相同的例 子归于同一子集,A(i)取几个 值就得几个子集; 4、对既含正例又含反例的子集 ,递归调用建树算法; 5、若子集仅含正例或反例,对 应分支标上p或N,返回调用处。 三、数据挖掘技术 神经网络方法 主要思想: 以神经生理学为基础,模拟 人的神经元功能,经过输入 层、隐藏层、输出层等,对 数据进行调整,计算,最后 得到结果,用于分类和回归 。 三、数据挖掘技术 v 一个简单的神经网络,图中的椭圆表示节点,椭圆 间的连线表示连接。神经网络接受左边节点的属性 值,并对其进行计算,右边的节点就产生新值,这 个值表示神经网络模型的预测值。 三、数据挖掘技术 遗传算法 (Genetic Algorithm,GA) 主要思想: 基于自然进化理论,模拟 基因联合、突变、选择等 过程的一种优化技术。 三、数据挖掘技术 遗传算法 创建一个随机的初始状态:初始种群是从解中随机选择出来的 ,将这些解比喻为染色体或基因,该种群被称为第一代。 评估适应度:对每一个解(染色体)指定一个适应度的值,根据问 题求解的实际接近程度来指定(以便逼近求解问题的答案)。 繁殖(包括子代突变):带有较高适应度值的那些染色体更可能产 生后代(后代产生后也将发生突变)。后代是父母的产物,他们由来 自父母的基因结合而成,这个过程被称为“杂交”。 下一代:如果新的一代包含一个解,能产生一个充分接近或等于 期望答案的输出,那么问题就已经解决了。如果情况并非如此,新 的一代将重复他们父母所进行的繁衍过程,一代一代演化下去,直 到达到期望的解为止。 并行计算:非常容易将遗传算法用到并行计算和群集环境中。 一种方法是直接把每个节点当成一个并行的种群看待。然后有机 体根据不同的繁殖方法从一个节

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论