




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
古城区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD2 执行右面的程序框图,如果输入的,则输出的属于( ) A. B. C. D.【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用3 下列命题的说法错误的是( )A若复合命题pq为假命题,则p,q都是假命题B“x=1”是“x23x+2=0”的充分不必要条件C对于命题p:xR,x2+x+10 则p:xR,x2+x+10D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”4 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)5 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使216 下列函数中,定义域是且为增函数的是( )A. B. C. D.7 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )Ak7Bk6Ck5Dk48 沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为( )ABCD9 设M=x|2x2,N=y|0y2,函数f(x)的定义域为M,值域为N,则f(x)的图象可以是( )ABCD10已知均为正实数,且,则( )A B C D11设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为( )A3a2B6a2C12a2D24a212某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A程序流程图B工序流程图C知识结构图D组织结构图二、填空题13设x,y满足约束条件,则目标函数z=2x3y的最小值是14设实数x,y满足,向量=(2xy,m),=(1,1)若,则实数m的最大值为15已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 16已知线性回归方程=9,则b=17某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元18某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为升三、解答题19已知A(3,0),B(3,0),C(x0,y0)是圆M上的三个不同的点(1)若x0=4,y0=1,求圆M的方程;(2)若点C是以AB为直径的圆M上的任意一点,直线x=3交直线AC于点R,线段BR的中点为D判断直线CD与圆M的位置关系,并证明你的结论20已知三棱柱ABCA1B1C1,底面三角形ABC为正三角形,侧棱AA1底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF平面BEC1(2)求A到平面BEC1的距离21(本小题满分12分)在中,角所对的边分别为,()求的值; ()若,求的面积22已知数列an的前n项和为Sn,首项为b,若存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立()求数列an的通项公式;()问是否存在一组非零常数a,b,使得Sn成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由23(本题满分13分)已知函数.(1)当时,求的极值;(2)若在区间上是增函数,求实数的取值范围.【命题意图】本题考查利用导数知识求函数的极值及利用导数来研究函数单调性问题,本题渗透了分类讨论思想,化归思想的考查,对运算能力、函数的构建能力要求高,难度大.24已知a,b,c分别为ABC三个内角A,B,C的对边,且满足2bcosC=2ac()求B; ()若ABC的面积为,b=2求a,c的值古城区第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A2 【答案】B3 【答案】A【解析】解:A复合命题pq为假命题,则p,q至少有一个命题为假命题,因此不正确;B由x23x+2=0,解得x=1,2,因此“x=1”是“x23x+2=0”的充分不必要条件,正确;C对于命题p:xR,x2+x+10 则p:xR,x2+x+10,正确;D命题“若x23x+2=0,则x=1”的逆否命题为:“若x1,则x23x+20”,正确故选:A4 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反5 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A6 【答案】B 【解析】试题分析:对于A,为增函数,为减函数,故为减函数,对于B,故为增函数,对于C,函数定义域为,不为,对于D,函数为偶函数,在上单调递减,在上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.7 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k5?故答案选C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误8 【答案】A【解析】解:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确故选:A【点评】本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键9 【答案】B【解析】解:A项定义域为2,0,D项值域不是0,2,C项对任一x都有两个y与之对应,都不符故选B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题10【答案】A【解析】考点:对数函数,指数函数性质11【答案】B【解析】解:根据题意球的半径R满足(2R)2=6a2,所以S球=4R2=6a2故选B12【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示故选D【点评】本题考查结构图和流程图的概念,是基础题解题时要认真审题,仔细解答二、填空题13【答案】6 【解析】解:由约束条件,得可行域如图,使目标函数z=2x3y取得最小值的最优解为A(3,4),目标函数z=2x3y的最小值为z=2334=6故答案为:614【答案】6 【解析】解: =(2xy,m),=(1,1)若,2xy+m=0,即y=2x+m,作出不等式组对应的平面区域如图:平移直线y=2x+m,由图象可知当直线y=2x+m经过点C时,y=2x+m的截距最大,此时z最大由,解得,代入2xy+m=0得m=6即m的最大值为6故答案为:6【点评】本题主要考查线性规划的应用,利用m的几何意义结合数形结合,即可求出m的最大值根据向量平行的坐标公式是解决本题的关键15【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键16【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题17【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错18【答案】8升 【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量486=8故答案是:8三、解答题19【答案】 【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0圆的方程为x2+y28y9=0(2)直线CD与圆M相切O、D分别是AB、BR的中点则ODAR,CAB=DOB,ACO=COD,又CAO=ACO,DOB=COD又OC=OB,所以BODCODOCD=OBD=90即OCCD,则直线CD与圆M相切 (其他方法亦可)20【答案】 【解析】解:(1)取BC1的中点H,连接HE、HF,则BCC1中,HFCC1且HF=CC1又平行四边形AA1C1C中,AECC1且AE=CC1AEHF且AE=HF,可得四边形AFHE为平行四边形,AFHE,AF平面REC1,HE平面REC1AF平面REC1(2)等边ABC中,高AF=,所以EH=AF=由三棱柱ABCA1B1C1是正三棱柱,得C1到平面AA1B1B的距离等于RtA1C1ERtABE,EC1=EB,得EHBC1可得S=BC1EH=,而SABE=ABBE=2由等体积法得VABEC1=VC1BEC,Sd=SABE,(d为点A到平面BEC1的距离)即d=2,解之得d=点A到平面BEC1的距离等于【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题21【答案】【解析】(本小题满分12分)解: ()由及正弦定理得, (3分),(6分)(), (8分), (10分)的面积为(12分)22【答案】 【解析】解:()数列an的前n项和为Sn,首项为b,存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立,由题意得当n=1时,(1a)b=ba2,a2=ab=aa1,当n2时,(1a)Sn=ban+1,(1a)Sn+1=ban+1,两式作差,得:an+2=aan+1,n2,an是首项为b,公比为a的等比数列,()当a=1时,Sn=na1=nb,不合题意,当a1时,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得Sn成等比数列【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用23【答案】【解析】(1)函数的定义域为,因为,当时,则.令,得.2分所以的变化情况如下表:0极小值所以当时,的极小值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第一章声现象 单元试卷(含解析)2025-2026学年苏科版(2024)物理八年级上册
- 考研真题历年题库及答案
- 红磷燃烧的题目及答案
- 2025年汽车自动采样设备项目建议书
- 扶贫知识培训内容课件
- 羧酸衍生物2讲解
- 压力式温度计行业员工职业发展规划与管理
- 2025年播音主持证考试真题及答案
- 2025年会计考试题基础题及答案
- 2025年焊工车间考试题目及答案
- 精益SMED快速换模改善
- IATF16949仓库管理制度
- 财务开票员的岗位职责 开票员岗位职责介绍
- 运输管理实务(第四版)PPT完整全套教学课件
- 一种基于STM32的智能门锁系统的设计
- 营业厅门面转让合同
- GB/Z 41084-2021碳纤储能脚
- 天健消耗品管理系统
- GB/T 70.2-2008内六角平圆头螺钉
- GB/T 28118-2011食品包装用塑料与铝箔复合膜、袋
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
评论
0/150
提交评论