




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
霍林郭勒市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 在等比数列中,且数列的前项和,则此数列的项数等于( )A4 B5 C6 D7【命题意图】本题考查等比数列的性质及其通项公式,对逻辑推理能力、运算能力及分类讨论思想的理解有一定要求,难度中等.2 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( )A3,6,9,12,15,18B4,8,12,16,20,24C2,7,12,17,22,27D6,10,14,18,22,263 已知全集为,集合,则( )A B C D4 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=05 已知x1,则函数的最小值为( )A4B3C2D16 已知f(x)是R上的偶函数,且在(,0)上是增函数,设,b=f(log43),c=f(0.41.2)则a,b,c的大小关系为( )AacbBbacCcabDcba7 若函数在上单调递增,则实数的取值范围为( )A BC. D8 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D139 在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A众数B平均数C中位数D标准差10已知命题p:“1,e,alnx”,命题q:“xR,x24x+a=0”若“pq”是真命题,则实数a的取值范围是( )A(1,4B(0,1C1,1D(4,+)11单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A该几何体体积为B该几何体体积可能为C该几何体表面积应为+D该几何体唯一12下面各组函数中为相同函数的是( )Af(x)=,g(x)=x1Bf(x)=,g(x)=Cf(x)=ln ex与g(x)=elnxDf(x)=(x1)0与g(x)=二、填空题13已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 14已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为15在直角坐标系xOy中,已知点A(0,1)和点B(3,4),若点C在AOB的平分线上且|=2,则=16阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是17设函数f(x)=,则f(f(2)的值为18设,实数,满足,若,则实数的取值范围是_【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力三、解答题19已知函数f(x)=xlnx+ax(aR)()若a=2,求函数f(x)的单调区间;()若对任意x(1,+),f(x)k(x1)+axx恒成立,求正整数k的值(参考数据:ln2=0.6931,ln3=1.0986) 20已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围21已知z是复数,若z+2i为实数(i为虚数单位),且z4为纯虚数(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围22已知等差数列an,满足a3=7,a5+a7=26()求数列an的通项an;()令bn=(nN*),求数列bn的前n项和Sn23数列中,且满足.(1)求数列的通项公式;(2)设,求.24已知函数f(x)=ax2+2xlnx(aR)()若a=4,求函数f(x)的极值;()若f(x)在(0,1)有唯一的零点x0,求a的取值范围;()若a(,0),设g(x)=a(1x)22x1ln(1x),求证:g(x)在(0,1)内有唯一的零点x1,且对()中的x0,满足x0+x11 霍林郭勒市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】B 2 【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为306=5,只有选项C中编号间隔为5,故选:C3 【答案】A【解析】考点:1、集合的表示方法;2、集合的补集及交集.4 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=05 【答案】B【解析】解:x1x10由基本不等式可得, 当且仅当即x1=1时,x=2时取等号“=”故选B6 【答案】C【解析】解:由题意f(x)=f(|x|)log431,|log43|1;2|ln|=|ln3|1;|0.41.2|=|1.2|2|0.41.2|ln|log43|又f(x)在(,0上是增函数且为偶函数,f(x)在0,+)上是减函数cab故选C7 【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 8 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题9 【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错平均数86,88不相等,B错中位数分别为86,88,不相等,C错A样本方差S2= (8286)2+2(8486)2+3(8686)2+4(8886)2=4,标准差S=2,B样本方差S2= (8488)2+2(8688)2+3(8888)2+4(9088)2=4,标准差S=2,D正确故选D【点评】本题考查众数、平均数、中位标准差的定义,属于基础题10【答案】A【解析】解:若命题p:“1,e,alnx,为真命题,则alne=1,若命题q:“xR,x24x+a=0”为真命题,则=164a0,解得a4,若命题“pq”为真命题,则p,q都是真命题,则,解得:1a4故实数a的取值范围为(1,4故选:A【点评】本题主要考查复合命题与简单命题之间的关系,利用条件先求出命题p,q的等价条件是解决本题的关键11【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3(11)+3(11)+()2=故选:C【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键12【答案】D【解析】解:对于A:f(x)=|x1|,g(x)=x1,表达式不同,不是相同函数;对于B:f(x)的定义域是:x|x1或x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于C:f(x)的定义域是R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于D:f(x)=1,g(x)=1,定义域都是x|x1,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题二、填空题13【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.14【答案】AG 【解析】解:由题意可得A=,G=,由基本不等式可得AG,当且仅当a=b取等号,由题意a,b是互异的负数,故AG故答案是:AG【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题15【答案】(,) 【解析】解:,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:又|=2=(,)故答案为:(,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2)及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解16【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视17【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:418【答案】.【解析】三、解答题19【答案】 【解析】解:(I)a=2时,f(x)=xlnx2x,则f(x)=lnx1令f(x)=0得x=e,当0xe时,f(x)0,当xe时,f(x)0,f(x)的单调递减区间是(0,e),单调递增区间为(e,+)(II)若对任意x(1,+),f(x)k(x1)+axx恒成立,则xlnx+axk(x1)+axx恒成立,即k(x1)xlnx+axax+x恒成立,又x10,则k对任意x(1,+)恒成立,设h(x)=,则h(x)=设m(x)=xlnx2,则m(x)=1,x(1,+),m(x)0,则m(x)在(1,+)上是增函数m(1)=10,m(2)=ln20,m(3)=1ln30,m(4)=2ln40,存在x0(3,4),使得m(x0)=0,当x(1,x0)时,m(x)0,即h(x)0,当x(x0,+)时,m(x)0,h(x)0,h(x)在(1,x0)上单调递减,在(x0,+)上单调递增,h(x)的最小值hmin(x)=h(x0)=m(x0)=x0lnx02=0,lnx0=x02h(x0)=x0khmin(x)=x03x04,k3k的值为1,2,3【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题 20【答案】 【解析】解:(1)f(x)=log3(1+x)log3(1x)为奇函数理由:1+x0且1x0,得定义域为(1,1),(2分)又f(x)=log3(1x)log3(1+x)=f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又1x1,k0,(6分)由f(x)g(x)得log3log3,即,(8分)即k21x2,(9分)x,时,1x2最小值为,(10分)则k2,(11分)又k0,则k,即k的取值范围是(,.【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题21【答案】 【解析】解:(1)设z=x+yi(x,yR)由z+2i=x+(y+2)i为实数,得y+2=0,即y=2由z4=(x4)+yi为纯虚数,得x=4z=42i(2)(z+mi)2=(m2+4m+12)+8(m2)i,根据条件,可知 解得2m2,实数m的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题22【答案】 【解析】解:()设an的首项为a1,公差为d,a5+a7=26a6=13,an=a3+(n3)d=2n+1;()由(1)可知,23【答案】(1);(2)【解析】试题分析:(1)由,所以是等差数列且,即可求解数列的通项公式;(2)由(1)令,得,当时,;当时,;当时,即可分类讨论求解数列当时,.1考点:等差数列的通项公式;数列的求和24【答案】【解析】满分(14分)解法一:()当a=4时,f(x)=4x2+2xlnx,x(0,+),(1分)由x(0,+),令f(x)=0,得当x变化时,f(x),f(x)的变化如下表:xf(x)0+f(x)极小值故函数f(x)在单调递减,在单调递增,(3分)f(x)有极小值,无极大值(4分)(),令f(x)=0,得2ax2+2x1=0,设h(x)=2ax2+2x1则f(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;(5分)当a0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=1,h(1)=2a+10,所以满足题意;(6分)当a0,=0时,此时方程的解为x=1,不符合题意;当a0,0时,由h(0)=1,只需h(1)=2a+10,得(7分)综上,(8分)(说明:=0未讨论扣1分)()设t=1x,则t(0,1),p(t)=g(1t)=at2+2t3lnt,(9分),由,故由()可知,方程2at2+2t1=0在(0,1)内有唯一的解x0,且当t(0,x0)时,p(t)0,p(t)单调递减;t(x0,1)时,p(t)0,p(t)单调递增(11分)又p(1)=a10,所以p(x0)0(12分)取t=e3+2a(0,1),则p(e3+2a)=ae6+4a+2e3+2a3lne3+2a=ae6+4a+2e3+2a3+32a=a(e6+4a2)+2e3+2a0,从而当t(0,x0)时,p(t)必存在唯一的零点t1,且0t1x0,即01x1x0,得x1(0,1),且x0+x11,从而函数g(x)在(0,1)内有唯一的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025智能制造合作合同
- 2025短期合同工聘用合同范本
- 幼儿园常见传染病预防
- 传染病防治工作培训会
- 脊柱围手术期护理
- 2025年植物遗传综合试题
- 审计处工作总结模版
- 僵人综合征的临床护理
- 船厂班组年终总结模版
- 电力设备行业深度报告:欧洲电车趋势已起-从欧洲车企2025Q1财报看电动化趋势151mb
- 2025湖北水发集团园招聘40人笔试参考题库附带答案详解
- 2025年武汉数学四调试题及答案
- 2024年全国高中数学联赛北京赛区预赛一试试题(解析版)
- 建筑地基基础检测规范DBJ-T 15-60-2019
- 南瑞科技220kv断路器辅助保护nsr-322an型保护装置调试手册
- 滚筒冷渣机技术协议
- 氨基转移酶检测临床意义和评价注意点
- 中债收益率曲线和中债估值编制方法及使用说明
- 国家开放大学《行政组织学》章节测试参考答案
- 什么是标准工时如何得到标准工时
- 牛津译林版英语八年级下册8B——单词默写(表格版)
评论
0/150
提交评论