珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )ABCD =0.08x+1.232 以下四个命题中,真命题的是( ) A B“对任意的,”的否定是“存在, C,函数都不是偶函数 D已知,表示两条不同的直线,表示不同的平面,并且,则“”是 “”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力3 高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )ABCD4 三个数60.5,0.56,log0.56的大小顺序为( )Alog0.560.5660.5Blog0.5660.50.56C0.5660.5log0.56D0.56log0.5660.5 5 (+)2n(nN*)展开式中只有第6项系数最大,则其常数项为( )A120B210C252D456 若函数y=x2+(2a1)x+1在区间(,2上是减函数,则实数a的取值范围是( )A,+)B(,C,+)D(,7 设a是函数x的零点,若x0a,则f(x0)的值满足( )Af(x0)=0Bf(x0)0Cf(x0)0Df(x0)的符号不确定8 若关于的不等式的解集为或,则的取值为( )A B C D9 在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D10如图框内的输出结果是( )A2401B2500C2601D270411在二项式的展开式中,含x4的项的系数是( )A10B10C5D512已知命题p:22,命题q:x0R,使得x02+2x0+2=0,则下列命题是真命题的是( )ApBpqCpqDpq二、填空题13的展开式中的系数为 (用数字作答)14对于集合M,定义函数对于两个集合A,B,定义集合AB=x|fA(x)fB(x)=1已知A=2,4,6,8,10,B=1,2,4,8,12,则用列举法写出集合AB的结果为15如图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是已知样本中平均气温不大于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为16直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 17f(x)=x(xc)2在x=2处有极大值,则常数c的值为 14已知集合,若3M,5M,则实数a的取值范围是18若函数f(x)=logax(其中a为常数,且a0,a1)满足f(2)f(3),则f(2x1)f(2x)的解集是三、解答题19如图,在四棱锥OABCD中,底面ABCD四边长为1的菱形,ABC=,OA底面ABCD,OA=2,M为OA的中点,N为BC的中点()证明:直线MN平面OCD;()求异面直线AB与MD所成角的大小;()求点B到平面OCD的距离 20【南通中学2018届高三10月月考】设,函数,其中是自然对数的底数,曲线在点处的切线方程为.()求实数、的值;()求证:函数存在极小值;()若,使得不等式成立,求实数的取值范围.21已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围22(本题12分)如图,是斜边上一点,.(1)若,求;(2)若,求角.23(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且.(1)求证:平面 平面;(2)当 异面直线与所成的角为时,求折起的角度.24已知f()=,(1)化简f(); (2)若f()=2,求sincos+cos2的值珙县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:法一:由回归直线的斜率的估计值为1.23,可排除D由线性回归直线方程样本点的中心为(4,5),将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B法二:因为回归直线方程一定过样本中心点,将样本点的中心(4,5)分别代入各个选项,只有C满足,故选C【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程2 【答案】D3 【答案】 D【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,故两人都击不中的概率为(1)(1)=,故目标被击中的概率为1=,故选:D【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题4 【答案】A【解析】解:60.560=1,00.560.50=1,log0.56log0.51=0log0.560.5660.5故选:A【点评】本题考查了不等关系与不等式,考查了指数函数和对数函数的性质,对于此类大小比较问题,有时借助于0和1为媒介,能起到事半功倍的效果,是基础题5 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项【解答】解:由已知(+)2n(nN*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项6 【答案】B【解析】解:函数y=x2+(2a1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线又函数在区间(,2上是减函数,故2解得a故选B7 【答案】C【解析】解:作出y=2x和y=logx的函数图象,如图:由图象可知当x0a时,2logx0,f(x0)=2logx00故选:C8 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选D.考点:不等式与方程的关系.9 【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.10【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+99=2500,故选:B【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题11【答案】B【解析】解:对于,对于103r=4,r=2,则x4的项的系数是C52(1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具12【答案】D【解析】解:命题p:22是真命题,方程x2+2x+2=0无实根,故命题q:x0R,使得x02+2x0+2=0是假命题,故命题p,pq,pq是假命题,命题pq是真命题,故选:D二、填空题13【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为:令12-3r=3,r=3所以系数为:故答案为:14【答案】1,6,10,12 【解析】解:要使fA(x)fB(x)=1,必有xx|xA且xBx|xB且xA=6,101,12=1,6,10,12,所以AB=1,6,10,12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题15【答案】9 【解析】解:平均气温低于22.5的频率,即最左边两个矩形面积之和为0.101+0.121=0.22,所以总城市数为110.22=50,平均气温不低于25.5的频率即为最右面矩形面积为0.181=0.18,所以平均气温不低于25.5的城市个数为500.18=9故答案为:916【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 117【答案】6 【解析】解:f(x)=x32cx2+c2x,f(x)=3x24cx+c2,f(2)=0c=2或c=6若c=2,f(x)=3x28x+4,令f(x)0x或x2,f(x)0x2,故函数在(,)及(2,+)上单调递增,在(,2)上单调递减,x=2是极小值点故c=2不合题意,c=6故答案为6【点评】考查学生利用导数研究函数极值的能力,会利用待定系数法求函数解析式18【答案】(1,2) 【解析】解:f(x)=logax(其中a为常数且a0,a1)满足f(2)f(3),0a1,x0,若f(2x1)f(2x),则,解得:1x2,故答案为:(1,2)【点评】本题考查了对数函数的性质,考查函数的单调性问题,是一道基础题三、解答题19【答案】【解析】解:方法一(综合法)(1)取OB中点E,连接ME,NEMEAB,ABCD,MECD又NEOC,平面MNE平面OCDMN平面OCD(2)CDAB,MDC为异面直线AB与MD所成的角(或其补角)作APCD于P,连接MPOA平面ABCD,CDMP,所以AB与MD所成角的大小为(3)AB平面OCD,点A和点B到平面OCD的距离相等,连接OP,过点A作AQOP于点Q,APCD,OACD,CD平面OAP,AQCD又AQOP,AQ平面OCD,线段AQ的长就是点A到平面OCD的距离,所以点B到平面OCD的距离为方法二(向量法)作APCD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),O(0,0,2),M(0,0,1),(1),设平面OCD的法向量为n=(x,y,z),则=0, =0即取,解得=(,1)(0,4,)=0,MN平面OCD(2)设AB与MD所成的角为,AB与MD所成角的大小为(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d=所以点B到平面OCD的距离为【点评】培养学生利用多种方法解决数学问题的能力,考查学生利用空间向量求直线间的夹角和距离的能力20【答案】();()证明见解析;().【解析】试题分析:()利用导函数研究函数的切线,得到关于实数a,b的方程组,求解方程组可得;()结合()中求得的函数的解析式首先求解导函数,然后利用导函数讨论函数的单调性即可确定函数存在极小值;试题解析:(),由题设得,;()由()得,函数在是增函数,且函数图像在上不间断,使得,结合函数在是增函数有:)递减极小值递增函数存在极小值;(),使得不等式成立,即,使得不等式成立(*),令,则,结合()得,其中,满足,即,在内单调递增,结合(*)有,即实数的取值范围为21【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+4t2,x0,1当对称轴x=t0时,h(x)在x=0处取得最小值h(0)=4; 当对称轴0x=t1时,h(x)在x=t处取得最小值h(t)=4t2; 当对称轴x=t1时,h(x)在x=1处取得最小值h(1)=12t+4=2t+5综上所述:当t0时,最小值4;当0t1时,最小值4t2;当t1时,最小值2t+5(3)由已知:f(x)2x+m对于x1,3恒成立,mx25x+4对x1,3恒成立,g(x)=x25x+4在x1,3上的最小值为,m22【答案】(1);(2).【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理.当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论