




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
和龙市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x)为偶函数,且f(x+2)=f(x),当2x0时,f(x)=2x;若nN*,an=f(n),则a2017等于( )A2017B8CD2 已知f(x)=,若函数f(x)是R上的增函数,则a的取值范围是( )A(1,3)B(1,2)C2,3)D(1,23 设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)4 若函数的图象关于直线对称,且当,时,则等于( )A B C. D5 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)6 为得到函数的图象,可将函数的图象( )A向左平移个单位B向左平移个单位C.向右平移个单位D向右平移个单位 7 已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是( )AbcaBbacCabcDcba8 在ABC中,a,b,c分别是角A,B,C的对边,a=5,b=4,cosC=,则ABC的面积是( )A16B6C4D89 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D15010偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为( )A2B1C0D111已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力12已知幂函数y=f(x)的图象过点(,),则f(2)的值为( )ABC2D2二、填空题13定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .14为了近似估计的值,用计算机分别产生90个在1,1的均匀随机数x1,x2,x90和y1,y2,y90,在90组数对(xi,yi)(1i90,iN*)中,经统计有25组数对满足,则以此估计的值为15已知定义在R上的奇函数满足,且时,则的值为 16某公司对140名新员工进行培训,新员工中男员工有80人,女员工有60人,培训结束后用分层抽样的方法调查培训结果. 已知男员工抽取了16人,则女员工应抽取人数为 .17如图,已知,是异面直线,点,且;点,且.若,分别是,的中点,则与所成角的余弦值是_.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.18在ABC中,若角A为锐角,且=(2,3),=(3,m),则实数m的取值范围是三、解答题19(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.20(本题12分)如图,是斜边上一点,.(1)若,求;(2)若,求角.21已知集合P=x|2x23x+10,Q=x|(xa)(xa1)0(1)若a=1,求PQ;(2)若xP是xQ的充分条件,求实数a的取值范围22【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.(1)求实数和的值;(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;(3)讨论函数在上的零点个数.23【启东中学2018届高三上学期第一次月考(10月)】设,函数.(1)证明在上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O是坐标原点),证明:24已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn和龙市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:f(x+2)=f(x),f(x+4)=f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4a2017=f(2017)=f(5044+1)=f(1),f(x)为偶函数,当2x0时,f(x)=2x,f(1)=f(1)=,a2017=f(1)=,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键2 【答案】C【解析】解:f(x)=是R上的增函数,解得:a2,3),故选:C【点评】本题考查的知识点是分段函数的单调性,正确理解分段函数单调性的含义是解答的关键3 【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B4 【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得,解得,从而,再次利用数形结合思想和转化化归思想可得关于直线对称,可得,从而5 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B6 【答案】C【解析】试题分析:将函数的图象向右平移个单位,得的图象,故选C考点:图象的平移.7 【答案】A【解析】解:a=0.50.5,c=0.50.2,0ac1,b=20.51,bca,故选:A8 【答案】D【解析】解:a=5,b=4,cosC=,可得:sinC=,SABC=absinC=8故选:D9 【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B10【答案】D【解析】解:f(x+2)为奇函数,f(x+2)=f(x+2),f(x)是偶函数,f(x+2)=f(x+2)=f(x2),即f(x+4)=f(x),则f(x+4)=f(x),f(x+8)=f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由f(x+4)=f(x),得当x=2时,f(2)=f(2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键11【答案】D第卷(共90分)12【答案】A【解析】解:设幂函数y=f(x)=x,把点(,)代入可得=,=,即f(x)=,故f(2)=,故选:A二、填空题13【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.114【答案】 【解析】设A(1,1),B(1,1),则直线AB过原点,且阴影面积等于直线AB与圆弧所围成的弓形面积S1,由图知,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题15【答案】【解析】1111试题分析:,所以考点:利用函数性质求值16【答案】12【解析】考点:分层抽样17【答案】【解析】18【答案】 【解析】解:由于角A为锐角,且不共线,6+3m0且2m9,解得m2且m实数m的取值范围是故答案为:【点评】本题考查平面向量的数量积运算,考查了向量共线的条件,是基础题三、解答题19【答案】(1)证明见解析;(2)证明见解析.【解析】1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段20【答案】(1);(2).【解析】考点:正余弦定理的综合应用,二次方程,三角方程.【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理.当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.21【答案】 【解析】解:(1)当a=1时,Q=x|(x1)(x2)0=x|1x2则PQ=1(2)aa+1,Q=x|(xa)(xa1)0=x|axa+1xP是xQ的充分条件,PQ,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型22【答案】(1);(2)答案见解析;(3)当或时,在有两个零点;当时,在有一个零点.【解析】试题分析:(1)由题意得到关于实数b,c的方程组,求解方程组可得; (3)函数的导函数,结合导函数的性质可得当或时,在有两个零点;当时,在有一个零点.试题解析:(1)由题意,解得;(2)由(1)可知,;假设存在满足题意,则是一个与无关的定值,即是一个与无关的定值,则,即,平行直线的斜率为;(3),其中,设两根为和,考察在上的单调性,如下表1当时,而,在和上各有一个零点,即在有两个零点;2当时,而,仅在上有一个零点,即在有一个零点;3当时,且,当时,则在和上各有一个零点,即在有两个零点;当时,则仅在上有一个零点,即在有一个零点;综上:当或时,在有两个零点;当时,在有一个零点.点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别求解函数的最值时,要先求函数yf(x)在a,b内所有使f(x)0的点,再计算函数yf(x)在区间内所有使f(x)0的点和区间端点处的函数值,最后比较即得23【答案】(1)在上有且只有一个零点(2)证明见解析【解析】试题分析:试题解析:(1),在上为增函数,又,即,由零点存在性定理可知,在上为增函数,且,在上仅有一个零点。(2),设点,则,在点处的切线与轴平行,点处切线与直线平行,点处切线的斜率,又题目需证明,即,则只需证明,即。令,则,易知,当时,单调递减,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孩子手机上瘾怎么戒
- 家电公司同业拆借管理细则
- 家电公司跑步活动组织办法
- 跳画技能考试试题及答案
- 启蒙篮球测试题及答案
- 公寓管理试题及答案
- 会展概论试题及答案
- 专职理财经理考试试题及答案
- 倒茶礼仪考试题及答案
- java包装类面试题及答案
- 温硝化制硝基苯装置的改进
- 保教知识与能力幼儿园课件
- 财务部半年度述职汇报PPT模板
- 药品种类清单
- 公共基础知识(社区工作者基础知识)试题(附答案)
- GB/T 37915-2019社区商业设施设置与功能要求
- GB/T 31298-2014TC4钛合金厚板
- 《电业安全工作规程》
- 卡西欧gw5600说明书
- 中兴NGN培训教材 MSG9000结构原理介绍课件
- 穿湖隧道施工组织设计
评论
0/150
提交评论