




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东河区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D2 定义在上的偶函数满足,对且,都有,则有( )A BC. D3 阅读如下所示的程序框图,若运行相应的程序,则输出的的值是( )A39 B21 C81 D1024 棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应截面面积为、,则( )A B C D5 在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2=bc,sinC=2sinB,则A=( )A30B60C120D1506 已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为an,则数列an是( )A公差为a的等差数列B公差为a的等差数列C公比为a的等比数列D公比为的等比数列7 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形则该几何体表面积等于( )A12+B12+23C12+24D12+8 如图,在棱长为1的正方体中,为棱中点,点在侧面内运动,若,则动点的轨迹所在曲线为( )A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力.9 已知lga+lgb=0,函数f(x)=ax与函数g(x)=logbx的图象可能是( )ABCD10如图可能是下列哪个函数的图象( )Ay=2xx21By=Cy=(x22x)exDy=11为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别是否需要志愿者男女需要4030不需要160270由算得附表:参照附表,则下列结论正确的是( )有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别无关”; 有以上的把握认为“该地区的老年人是否需要志愿者提供帮助与性别有关”;采用系统抽样方法比采用简单随机抽样方法更好;采用分层抽样方法比采用简单随机抽样方法更好;A B C D12已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )A B C D二、填空题13如图所示,圆中,弦的长度为,则的值为_【命题意图】本题考查平面向量数量积、垂径定理等基础知识,意在考查对概念理解和转化化归的数学思想14直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为15如图,一个空间几何体的正视图和侧视图都是边长为2的正三角形,俯视如图是一个圆,那么该几何体的体积是 16已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号),1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同17某校开设9门课程供学生选修,其中A,B,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有种18过抛物线C:y2=4x的焦点F作直线l交抛物线C于A,B,若|AF|=3|BF|,则l的斜率是三、解答题19(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.20(本小题满分12分)一直线被两直线截得线段的中点是点, 当点为时, 求此直线方程.21【南师附中2017届高三模拟一】已知是正实数,设函数.(1)设 ,求 的单调区间;(2)若存在,使且成立,求的取值范围.22已知数列an的首项为1,前n项和Sn满足=+1(n2)()求Sn与数列an的通项公式;()设bn=(nN*),求使不等式b1+b2+bn成立的最小正整数n23(本小题满分12分)如图,在四棱锥中,底面为菱形,分别是棱的中点,且平面.(1)求证:平面;(2)求证:平面平面.24如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小东河区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.2 【答案】A 【解析】考点:1、函数的周期性;2、奇偶性与单调性的综合.11113 【答案】D111.Com【解析】试题分析:第一次循环:;第二次循环:;第三次循环:结束循环,输出故选D. 1考点:算法初步4 【答案】A【解析】考点:棱锥的结构特征5 【答案】A【解析】解:sinC=2sinB,c=2b,a2b2=bc,cosA=A是三角形的内角A=30故选A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题6 【答案】A【解析】解:,an=S(n)s(n1)=anan1=a数列an是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用7 【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=(2+8)424+(4212)+(4)+8=12+24故选:C【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目8 【答案】C. 【解析】易得平面,所有满足的所有点在以为轴线,以所在直线为母线的圆锥面上,点的轨迹为该圆锥面与平面的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,点的轨迹是双曲线,故选C.9 【答案】B【解析】解:lga+lgb=0ab=1则b=从而g(x)=logbx=logax,f(x)=ax与函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B10【答案】 C【解析】解:A中,y=2xx21,当x趋向于时,函数y=2x的值趋向于0,y=x2+1的值趋向+,函数y=2xx21的值小于0,A中的函数不满足条件;B中,y=sinx是周期函数,函数y=的图象是以x轴为中心的波浪线,B中的函数不满足条件;C中,函数y=x22x=(x1)21,当x0或x2时,y0,当0x2时,y0;且y=ex0恒成立,y=(x22x)ex的图象在x趋向于时,y0,0x2时,y0,在x趋向于+时,y趋向于+;C中的函数满足条件;D中,y=的定义域是(0,1)(1,+),且在x(0,1)时,lnx0,y=0,D中函数不满足条件故选:C【点评】本题考查了函数的图象和性质的应用问题,解题时要注意分析每个函数的定义域与函数的图象特征,是综合性题目11【答案】D 【解析】解析:本题考查独立性检验与统计抽样调查方法由于,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关,正确;该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好,正确,选D12【答案】【解析】试题分析:,故选B.考点:1.三视图;2.几何体的体积.二、填空题13【答案】14【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式15【答案】 【解析】解:此几何体是一个圆锥,由正视图和侧视图都是边长为2的正三角形,其底面半径为1,且其高为正三角形的高由于此三角形的高为,故圆锥的高为此圆锥的体积为=故答案为【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是圆锥的体积三视图的投影规则是:“主视、俯视 长对正;主视、左视高平齐,左视、俯视 宽相等”三视图是新课标的新增内容,在以后的高考中有加强的可能16【答案】 【解析】解:对于,令g(x)=x,可得x=或x=1,故正确;对于,因为f(x0)=x0,所以f(f(x0)=f(x0)=x0,即f(f(x0)=x0,故x0也是函数y=f(x)的稳定点,故正确;对于,g(x)=2x21,令2(2x21)21=x,因为不动点必为稳定点,所以该方程一定有两解x=,1,由此因式分解,可得(x1)(2x+1)(4x2+2x1)=0还有另外两解,故函数g(x)的稳定点有,1,其中是稳定点,但不是不动点,故错误;对于,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0)=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力17【答案】75 【解析】计数原理的应用【专题】应用题;排列组合【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,根据分类计数加法得到共有60+15=75种不同的方法故答案为:75【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏18【答案】 【解析】解:抛物线C方程为y2=4x,可得它的焦点为F(1,0),设直线l方程为y=k(x1),由,消去x得设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=4|AF|=3|BF|,y1+3y2=0,可得y1=3y2,代入得2y2=,且3y22=4,消去y2得k2=3,解之得k=故答案为:【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题三、解答题19【答案】(1)证明见解析;(2)证明见解析.【解析】1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段20【答案】【解析】试题分析:设所求直线与两直线分别交于,根据因为分别在直线上,列出方程组,求解的值,即可求解直线的方程. 1考点:直线方程的求解.21【答案】(1)在上单调递减,在上单调递增.(2)【解析】【试题分析】(1)先对函数求导得,再解不等式得求出单调增区间;解不等式得求出单调减区间;(2)先依据题设得,由(1)知,然后分、三种情形,分别研究函数的最小值,然后建立不等式进行分类讨论进行求解出其取值范围:解:(1),由得,在上单调递减,在上单调递增.(2)由得,由条件得. 当,即时,由得.当时,在上单调递增,矛盾,不成立.由得.当,即时,在上单调递减,当时恒成立,综上所述,.22【答案】 【解析】解:()因为=+1(n2),所以是首项为1,公差为1的等差数列,则=1+(n1)1=n,从而Sn=n2当n=1时,a1=S1=1,当n1时,an=SnSn1=n2(n1)2=2n1因为a1=1也符合上式,所以an=2n1()由()知bn=,所以b1+b2+bn=,由,解得n12所以使不等式成立的最小正整数为13【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想23【答案】(1)详见解析;(2)详见解析.【解析】试题分析:(1)根据线面平行的判定定理,可先证明PQ与平面内的直线平行,则线面平行,所以取中点,连结,可证明,那就满足了线面平行的判定定理了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽蚌埠市怀远县教育局所属事业单位紧缺专业人才引进(校园招聘)15人模拟试卷附答案详解(模拟题)
- 2025内蒙古赤峰市红山区崇文实验学校教师招聘14人模拟试卷完整答案详解
- 2025湖南资兴市面向本市农村订单定向医学生、基层医疗卫生机构本土化专科层次人才培养医学生考核招聘15人考前自测高频考点模拟试题及答案详解(考点梳理)
- 广本安全驾驶课程培训课件
- 协议书协议书5篇
- 广播电视基础知识课件
- 2025年三亚市直属学校赴高校面向2025年应届毕业生招聘81人模拟试卷(含答案详解)
- 小学学生安全培训总结课件
- 小学外出培训安全承诺书课件
- Hydroxylamine-生命科学试剂-MCE
- 梅毒艾滋乙肝三病
- 割灌机安全操作规程培训
- 2024年山西省成考(专升本)大学政治考试真题含解析
- 最高法院第一巡回法庭关于行政审判法律适用若干问题的会议纪要
- 《病历书写基本规范》课件
- 足球场的运营可行性方案
- 重庆市面向西南大学定向选调2024届大学毕业生2024年国家公务员考试考试大纲历年真题3453笔试难、易错历年高频考点荟萃附带答案解析(附后)
- GB/T 2881-2023工业硅
- 小学生电力科普小讲座(课件)-小学常识科普主题班会
- 有限合伙份额质押合同完整版(包含质押登记公证手续)
- GB/T 43299-2023机动车玻璃电加热性能试验方法
评论
0/150
提交评论