封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知x,y满足时,z=xy的最大值为( )A4B4C0D22 已知,其中i为虚数单位,则a+b=( )A1B1C2D33 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=4 如图,在四棱锥PABCD中,PA平面ABCD,底面ABCD是菱形,AB=2,BAD=60()求证:BD平面PAC;()若PA=AB,求PB与AC所成角的余弦值;()当平面PBC与平面PDC垂直时,求PA的长【考点】直线与平面垂直的判定;点、线、面间的距离计算;用空间向量求直线间的夹角、距离5 在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD6 如图是某工厂对一批新产品长度(单位:mm)检测结果的频率分布直方图估计这批产品的中位数为( )A20B25C22.5D22.757 设、是两个非零向量,则“(+)2=|2+|2”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件8 已知函数()在定义域上为单调递增函数,则的最小值是( )A B C D 9 在复平面内,复数(4+5i)i(i为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限10定义运算:例如,则函数的值域为( )A B C D11已知集合M=1,4,7,MN=M,则集合N不可能是( )AB1,4CMD2,712设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D6二、填空题13设为锐角,若sin()=,则cos2=14设,实数,满足,若,则实数的取值范围是_【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力15已知函数的三个零点成等比数列,则 .16已知是函数两个相邻的两个极值点,且在处的导数,则_17函数y=ax+1(a0且a1)的图象必经过点(填点的坐标)18已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=三、解答题19如图,边长为2的等边PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M为BC的中点()证明:AMPM; ()求点D到平面AMP的距离20已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行(1)求函数的单调区间;(2)若x1,3时,f(x)14c2恒成立,求实数c的取值范围 21已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 22【泰州中学2018届高三10月月考】已知函数.(1)若曲线与直线相切,求实数的值;(2)记,求在上的最大值;(3)当时,试比较与的大小.23(本小题满分13分)在四棱锥中,底面是直角梯形,()在棱上确定一点,使得平面;()若,求直线与平面所成角的大小24如图,点A是单位圆与x轴正半轴的交点,B(,)(I)若AOB=,求cos+sin的值;(II)设点P为单位圆上的一个动点,点Q满足=+若AOP=2,表示|,并求|的最大值 封开县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=xy为y=xz,由图可知,当直线y=xz过点A时,直线在y轴上的截距最小,z有最大值为4故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题2 【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题3 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题4 【答案】 【解析】解:(I)证明:因为四边形ABCD是菱形,所以ACBD,又因为PA平面ABCD,所以PABD,PAAC=A所以BD平面PAC(II)设ACBD=O,因为BAD=60,PA=AB=2,所以BO=1,AO=OC=,以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系Oxyz,则P(0,2),A(0,0),B(1,0,0),C(0,0)所以=(1,2),设PB与AC所成的角为,则cos=|(III)由(II)知,设,则设平面PBC的法向量=(x,y,z)则=0,所以令,平面PBC的法向量所以,同理平面PDC的法向量,因为平面PBC平面PDC,所以=0,即6+=0,解得t=,所以PA=【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力5 【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算6 【答案】C【解析】解:根据频率分布直方图,得;0.025+0.045=0.30.5,0.3+0.085=0.70.5;中位数应在2025内,设中位数为x,则0.3+(x20)0.08=0.5,解得x=22.5;这批产品的中位数是22.5故选:C【点评】本题考查了利用频率分布直方图求数据的中位数的应用问题,是基础题目7 【答案】C【解析】解:设a、b是两个非零向量,“(a+b)2=|a|2+|b|2”(a+b)2=|a|2+|b|2+2ab=|a|2+|b|2ab=0,即ab;abab=0即(a+b)2=|a|2+|b|2所以“(a+b)2=|a|2+|b|2”是“ab”的充要条件故选C8 【答案】A【解析】试题分析:由题意知函数定义域为,因为函数()在定义域上为单调递增函数在定义域上恒成立,转化为在恒成立,故选A. 1考点:导数与函数的单调性9 【答案】B【解析】解:(4+5i)i=54i,复数(4+5i)i的共轭复数为:5+4i,在复平面内,复数(4+5i)i的共轭复数对应的点的坐标为:(5,4),位于第二象限故选:B10【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题. 11【答案】D【解析】解:MN=M,NM,集合N不可能是2,7,故选:D【点评】本题主要考查集合的关系的判断,比较基础12【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B二、填空题13【答案】 【解析】解:为锐角,若sin()=,cos()=,sin= sin()+cos()=,cos2=12sin2=故答案为:【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题14【答案】.【解析】15【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题16【答案】【解析】考点:三角函数图象与性质,函数导数与不等式【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和,再结合极值点的导数等于零,可求出.在求的过程中,由于题目没有给定它的取值范围,需要用来验证.求出表达式后,就可以求出.117【答案】(0,2) 【解析】解:令x=0,得y=a0+1=2函数y=ax+1(a0且a1)的图象必经过点 (0,2)故答案为:(0,2)【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点18【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题三、解答题19【答案】 【解析】()证明:取CD的中点E,连接PE、EM、EAPCD为正三角形PECD,PE=PDsinPDE=2sin60=平面PCD平面ABCDPE平面ABCD四边形ABCD是矩形ADE、ECM、ABM均为直角三角形由勾股定理得EM=,AM=,AE=3EM2+AM2=AE2,AME=90AMPM()解:设D点到平面PAM的距离为d,连接DM,则VPADM=VDPAM而在RtPEM中,由勾股定理得PM=,即点D到平面PAM的距离为20【答案】 【解析】解:(1)由题意:f(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为3;由已知所以(3分)所以由f(x)=3x26x0得心x0或x2;所以当x(0,2)时,函数单调递减;当x(,0),(2,+)时,函数单调递增(6分)(2)由(1)知,函数在x(1,2)时单调递减,在x(2,3)时单调递增;所以函数在区间1,3有最小值f(2)=c4要使x1,3,f(x)14c2恒成立只需14c2c4恒成立,所以c或c1故c的取值范围是c|c或c1(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题21【答案】【解析】解:(1)f(1)=a+b+c=,3a+2b+2c=0又3a2c2b,故3a0,2b0,从而a0,b0,又2c=3a2b及3a2c2b知3a3a2b2ba0,332,即3(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对c的正负情况进行讨论:当c0时,a0,f(0)=c0,f(1)=0所以函数f(x)在区间(0,1)内至少有一个零点;当c0时,a0,f(1)=0,f(2)=ac0所以函数f(x)在区间(1,2)内至少有一个零点;综合得函数f(x)在区间(0,2)内至少有一个零点;(3)x1,x2是函数f(x)的两个零点x1,x2是方程ax2+bx+c=0的两根故x1+x2=,x1x2=从而|x1x2|=3,|x1x2|【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题22【答案】(1);(2)当时,;当时,;(3).【解析】试题分析:(1)研究函数的切线主要是利用切点作为突破口求解;(2)通过讨论函数在定义域内的单调性确定最值,要注意对字母m的讨论;(3)比较两个函数的大小主要是转化为判断两个函数的差函数的符号,然后转化为研究差函数的单调性研究其最值试题解析:(1)设曲线与相切于点,由,知,解得,又可求得点为,所以代入,得.(2)因为,所以.当,即时,此时在上单调递增,所以;当即,当时,单调递减,当时,单调递增,.(i)当,即时,;(ii)当,即时,;当,即时,此时在上单调递减,所以.综上,当时,;当时,.(3)当时,当时,显然;当时,记函数,则,可知在上单调递增,又由知,在上有唯一实根,且,则,即(*),当时,单调递减;当时,单调递增,所以,结合(*)式,知,所以,则,即,所以.综上,.试题点睛:本题综合考查了利用导数研究函数的单调性、最值基本思路,当比较两个函数大小的时候,就转化为两个函数的差的单调性,进一步确定最值确定符号比较大小23【答案】 【解析】解: ()当时,平面.设为上一点,且,连结、,那么,.,又平面, 平面,平面 (5分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论