永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 如果过点M(2,0)的直线l与椭圆有公共点,那么直线l的斜率k的取值范围是( )ABCD2 (+)2n(nN*)展开式中只有第6项系数最大,则其常数项为( )A120B210C252D453 奇函数f(x)在(,0)上单调递增,若f(1)=0,则不等式f(x)0的解集是( )A(,1)(0,1)B(,1)(1,+)C(1,0)(0,1)D(1,0)(1,+)4 在ABC中,内角A,B,C的对边分别是a,b,c,若a2b2=bc,sinC=2sinB,则A=( )A30B60C120D1505 下列命题正确的是( )A很小的实数可以构成集合.B集合与集合是同一个集合.C自然数集 中最小的数是.D空集是任何集合的子集.6 下列哪组中的两个函数是相等函数( )A BC D7 已知为抛物线上两个不同的点,为抛物线的焦点若线段的中点的纵坐标为,则直线的方程为( ) A B C D8 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点9 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 10已知一三棱锥的三视图如图所示,那么它的体积为( )A B C D11设a,b为实数,若复数,则ab=( )A2B1C1D212若不等式1ab2,2a+b4,则4a2b的取值范围是( )A5,10B(5,10)C3,12D(3,12)二、填空题13若直线:与直线:垂直,则 .14已知正方体ABCDA1B1C1D1的一个面A1B1C1D1在半径为的半球底面上,A、B、C、D四个顶点都在此半球面上,则正方体ABCDA1B1C1D1的体积为15已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是16直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是17函数f(x)=log(x22x3)的单调递增区间为18用“”或“”号填空:30.830.7三、解答题19【南师附中2017届高三模拟一】已知是正实数,设函数.(1)设 ,求 的单调区间;(2)若存在,使且成立,求的取值范围.20从5名女同学和4名男同学中选出4人参加演讲比赛,(1)男、女同学各2名,有多少种不同选法?(2)男、女同学分别至少有1名,且男同学甲与女同学乙不能同时选出,有多少种不同选法?21设函数f(x)=lnxax+1()当a=1时,求曲线f(x)在x=1处的切线方程;()当a=时,求函数f(x)的单调区间;()在()的条件下,设函数g(x)=x22bx,若对于x11,2,x20,1,使f(x1)g(x2)成立,求实数b的取值范围22(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),过点的直线交曲线于两点. (1)将曲线的参数方程化为普通方程;(2)求的最值.23在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由24(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交圆于两点,于,求的长.永康市高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】D【解析】解:设过点M(2,0)的直线l的方程为y=k(x+2),联立,得(2k2+1)x2+8k2x+8k22=0,过点M(2,0)的直线l与椭圆有公共点,=64k44(2k2+1)(8k22)0,整理,得k2,解得k直线l的斜率k的取值范围是,故选:D【点评】本题考查直线的斜率的取值范围的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用2 【答案】 B【解析】【专题】二项式定理【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项【解答】解:由已知(+)2n(nN*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项3 【答案】A【解析】解:根据题意,可作出函数图象:不等式f(x)0的解集是(,1)(0,1)故选A4 【答案】A【解析】解:sinC=2sinB,c=2b,a2b2=bc,cosA=A是三角形的内角A=30故选A【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题5 【答案】D【解析】试题分析:根据子集概念可知,空集是任何集合的子集,是任何非空集合的真子集,所以选项D是正确,故选D.考点:集合的概念;子集的概念.6 【答案】D111【解析】考点:相等函数的概念.7 【答案】D 【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法设,那么,线段的中点坐标为.由,两式相减得,而,直线的方程为,即,选D8 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值9 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C10【答案】 B 【解析】解析:本题考查三视图与几何体的体积的计算如图该三棱锥是边长为的正方体中的一个四面体,其中,该三棱锥的体积为,选B11【答案】C【解析】解:,因此ab=1故选:C12【答案】A【解析】解:令4a2b=x(ab)+y(a+b)即解得:x=3,y=1即4a2b=3(ab)+(a+b)1ab2,2a+b4,33(ab)65(ab)+3(a+b)10故选A【点评】本题考查的知识点是简单的线性规划,其中令4a2b=x(ab)+y(a+b),并求出满足条件的x,y,是解答的关键二、填空题13【答案】1【解析】试题分析:两直线垂直满足,解得,故填:1.考点:直线垂直【方法点睛】本题考查了根据直线方程研究垂直关系,属于基础题型,当直线是一般式直线方程时,当两直线垂直时,需满足,当两直线平行时,需满足且,或是,当直线是斜截式直线方程时,两直线垂直,两直线平行时,.114【答案】2 【解析】解:如图所示,连接A1C1,B1D1,相交于点O则点O为球心,OA=设正方体的边长为x,则A1O=x在RtOAA1中,由勾股定理可得: +x2=,解得x=正方体ABCDA1B1C1D1的体积V=2故答案为:215【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:16【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题17【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)18【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题三、解答题19【答案】(1)在上单调递减,在上单调递增.(2)【解析】【试题分析】(1)先对函数求导得,再解不等式得求出单调增区间;解不等式得求出单调减区间;(2)先依据题设得,由(1)知,然后分、三种情形,分别研究函数的最小值,然后建立不等式进行分类讨论进行求解出其取值范围:解:(1),由得,在上单调递减,在上单调递增.(2)由得,由条件得. 当,即时,由得.当时,在上单调递增,矛盾,不成立.由得.当,即时,在上单调递减,当时恒成立,综上所述,.20【答案】 【解析】解:(1)男、女同学各2名的选法有C42C52=610=60种;(2)“男、女同学分别至少有1名”包括有“一男三女”,“二男二女”,“三男一女”,故选人种数为C41C53+C42C52+C43C51=40+60+20=120男同学甲与女同学乙同时选出的种数,由于已有两人,故再选两人即可,此两人可能是两男,一男一女,两女,故总的选法有C32+C41C31+C42=21,故有12021=9921【答案】 【解析】解:函数f(x)的定义域为(0,+),(2分)()当a=1时,f(x)=lnxx1,f(1)=2,f(1)=0,f(x)在x=1处的切线方程为y=2(5分)()=(6分)令f(x)0,可得0x1,或x2;令f(x)0,可得1x2故当时,函数f(x)的单调递增区间为(1,2);单调递减区间为(0,1),(2,+).()当时,由()可知函数f(x)在(1,2)上为增函数,函数f(x)在1,2上的最小值为f(1)=(9分)若对于x11,2,x20,1使f(x1)g(x2)成立,等价于g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值(*) (10分)又,x0,1当b0时,g(x)在0,1上为增函数,与(*)矛盾当0b1时,由及0b1得,当b1时,g(x)在0,1上为减函数,此时b1(11分)综上,b的取值范围是(12分)【点评】本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性,考查恒成立问题,解题的关键是将对于x11,2,x20,1使f(x1)g(x2)成立,转化为g(x)在0,1上的最小值不大于f(x)在(0,e上的最小值22【答案】(1).(2)的最大值为,最小值为.【解析】试题解析:解:(1)曲线的参数方程为(为参数),消去参数得曲线的普通方程为 (3分)(2)由题意知,直线的参数方程为(为参数),将代入得 (6分)设对应的参数分别为,则.的最大值为,最小值为. (10分)考点:参数方程化成普通方程23【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论