连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n2 设集合是三角形的三边长,则所表示的平面区域是( ) A B C D3 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD4 已知等比数列an的第5项是二项式(x+)4展开式的常数项,则a3a7( )A5B18C24D365 执行如图所示的程序框图,输出的结果是()A15 B21 C24 D356 下列四个命题中的真命题是( )A经过定点的直线都可以用方程表示B经过任意两个不同点、的直线都可以用方程表示C不经过原点的直线都可以用方程表示D经过定点的直线都可以用方程表示7 若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题8 函数y=sin(2x+)图象的一条对称轴方程为( )Ax=Bx=Cx=Dx=9 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为()A B C D10函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)11某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.12已知定义域为的偶函数满足对任意的,有,且当时,.若函数在上至少有三个零点,则实数的取值范围是( )111A B C D二、填空题13设集合A=x|x+m0,B=x|2x4,全集U=R,且(UA)B=,求实数m的取值范围为14下列命题:函数y=sinx和y=tanx在第一象限都是增函数;若函数f(x)在a,b上满足f(a)f(b)0,函数f(x)在(a,b)上至少有一个零点;数列an为等差数列,设数列an的前n项和为Sn,S100,S110,Sn最大值为S5;在ABC中,AB的充要条件是cos2Acos2B;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强其中正确命题的序号是(把所有正确命题的序号都写上)15已知一组数据,的方差是2,另一组数据,()的标准差是,则 16抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=17将曲线向右平移个单位后得到曲线,若与关于轴对称,则的最小值为_.18在(1+2x)10的展开式中,x2项的系数为(结果用数值表示)三、解答题19(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且20(本题满分12分)在长方体中,是棱上的一点,是棱上的一点.(1)求证:平面;(2)求证:;(3)若是棱的中点,是棱的中点,求证:平面.21已知函数f(x)=lg(x25x+6)和的定义域分别是集合A、B,(1)求集合A,B;(2)求集合AB,AB 22在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x)()求矩阵M的逆矩阵M1;()求曲线4x+y1=0在矩阵M的变换作用后得到的曲线C的方程 23(1)化简:(2)已知tan=3,计算 的值24【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.(1)求实数和的值;(2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?若存在,求出的值;若不存在,请说明理由;(3)讨论函数在上的零点个数.连江县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养2 【答案】A【解析】考点:二元一次不等式所表示的平面区域.3 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题4 【答案】D【解析】解:二项式(x+)4展开式的通项公式为Tr+1=x42r,令42r=0,解得r=2,展开式的常数项为6=a5,a3a7=a52=36,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题5 【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24故答案为:C6 【答案】B【解析】考点:直线方程的形式.【方法点晴】本题主要考查了直线方程的表示形式,对于直线的点斜式方程只能表示斜率存在的直线;直线的斜截式方程只能表示斜率存在的直线;直线的饿两点式方程不能表示和坐标轴平行的直线;直线的截距式方程不能表示与坐标轴平行和过原点的直线,此类问题的解答中熟记各种直线方程的局限性是解答的关键.1117 【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系8 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=k+,kz,求得x=,可得它的图象的对称轴方程为x=,kz,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题9 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B10【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C11【答案】B 12【答案】B【解析】试题分析:,令,则,是定义在上的偶函数,则函数是定义在上的,周期为的偶函数,又当时,令,则与在的部分图象如下图,在上至少有三个零点可化为与的图象在上至少有三个交点,在上单调递减,则,解得:故选A考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得是周期函数,其周期为,要使函数在上至少有三个零点,等价于函数的图象与函数的图象在上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围. 二、填空题13【答案】m2 【解析】解:集合A=x|x+m0=x|xm,全集U=R,所以CUA=x|xm,又B=x|2x4,且(UA)B=,所以有m2,所以m2故答案为m214【答案】 【解析】解:函数y=sinx和y=tanx在第一象限都是增函数,不正确,取x=,但是,因此不是单调递增函数;若函数f(x)在a,b上满足f(a)f(b)0,函数f(x)在(a,b)上至少有一个零点,正确;数列an为等差数列,设数列an的前n项和为Sn,S100,S110, =5(a6+a5)0, =11a60,a5+a60,a60,a50因此Sn最大值为S5,正确;在ABC中,cos2Acos2B=2sin(A+B)sin(AB)=2sin(A+B)sin(BA)0AB,因此正确;在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强,正确其中正确命题的序号是 【点评】本题综合考查了三角函数的单调性、函数零点存在判定定理、等差数列的性质、两角和差化积公式、线性回归分析,考查了推理能力与计算能力,属于难题15【答案】2【解析】试题分析:第一组数据平均数为,考点:方差;标准差16【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解17【答案】【解析】解析:曲线的解析式为,由与关于轴对称知,即对一切恒成立,由得的最小值为6.18【答案】180 【解析】解:由二项式定理的通项公式Tr+1=Cnranr br可设含x2项的项是Tr+1=C7r (2x)r可知r=2,所以系数为C1024=180,故答案为:180【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等三、解答题19【答案】(本小题满分13分)解:(), (1分)当时,解得或,解得,的递增区间为和,的递减区间为 (4分)当时,的递增区间为,递减区间为 (5分)当时,解得,解得或的递增区间为,的递减区间为和 (7分)()当时,由()知上递减,在上递增,在上递减,在没有零点 (9分),在上递减,在上,存在唯一的,使得且 (12分)综上所述,当时,有唯一的零点,且 (13分)20【答案】【解析】【命题意图】本题综合考查了线面垂直、线线垂直、线面平行等位置关系的证明,对空间想象能力及逻辑推理有较高要求,对于证明中辅助线的运用是一个难点,本题属于中等难度.21【答案】【解析】解:(1)由x25x+60,即(x2)(x3)0,解得:x3或x2,即A=x|x3或x2,由g(x)=,得到10,当x0时,整理得:4x0,即x4;当x0时,整理得:4x0,无解,综上,不等式的解集为0x4,即B=x|0x4;(2)A=x|x3或x2,B=x|0x4,AB=R,AB=x|0x2或3x4【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键22【答案】 【解析】解:()设点P(x,y)在矩阵M对应的变换作用下所得的点为P(x,y),则即=,M=又det(M)=3,M1=;()设点A(x,y)在矩阵M对应的变换作用下所得的点为A(x,y),则=M1=,即,代入4x+y1=0,得,即变换后的曲线方程为x+2y+1=0【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题 23【答案】 【解析】解:(1)=costan=sin(2)已知tan=3, =【点评】本题主要考查诱导公式、同角三角函数的基本关系,属于基础题24【答案】(1);(2)答案见解析;(3)当或时,在有两个零点;当时,在有一个零点.【解析】试题分析:(1)由题意得到关于实数b,c的方程组,求解方程组可得; (3)函数的导函数,结合导函数的性质可得当或时,在有两个零点;当时,在有一个零点.试题解析:(1)由题意,解得;(2)由(1)可知,;假设存在满足题意,则是一个与无关的定值,即是一个与无关的定值,则,即,平行直线的斜率为;(3),其中,设两根为和,考察在上的单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论